Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Feb;78(2):243-53.
doi: 10.1002/jmv.20533.

Molecular detection and characterization of human enteroviruses directly from clinical samples using RT-PCR and DNA sequencing

Affiliations

Molecular detection and characterization of human enteroviruses directly from clinical samples using RT-PCR and DNA sequencing

Miren Iturriza-Gómara et al. J Med Virol. 2006 Feb.

Abstract

Enteroviruses are common human pathogens associated with a wide spectrum of symptoms ranging from asymptomatic infection to acute flaccid paralysis and neonatal multi-organ failure. Molecular methods that provide rapid diagnosis and increased sensitivity have been developed for the diagnosis of enterovirus infection using oligonucleotide primers complementary to conserved sequences located in the 5' untranslated region (UTR), but data generated from these regions are not sufficiently discriminatory for typing due to the lack of correlation between their nucleic acid sequence and serotype specificity. Sequences derived from the gene encoding the capsid VP1 correlate with serotype, and therefore provide the opportunity for the development of molecular typing methods consistent with present serogical methods. In this study, oligonucleotide primers that amplify a region of the 5'UTR to detect enterovirus RNA, and the region encoding the enterovirus VP1 N-terminus to characterize virus strains were used in nested and semi-nested RT-PCRs, respectively. The ability of the VP1 RT-PCR to amplify diverse viruses within genotypes and genogroups was confirmed by the correct identification of both prototype strains, and strains circulating currently of the same genotypes. The molecular methods proved their utility through the detection of enteroviruses that failed to grow in cell culture, their subsequent characterization and the characterization of strains that failed to serotype in neutralization assays. Molecular methods increased significantly the sensitivity of detection (P < 0.001) and of characterization (P < 0.01) of enteroviruses when compared to classical methods.

PubMed Disclaimer

MeSH terms

LinkOut - more resources