Molecular cloning and heterologous expression of a cDNA encoding a mouse glutathione S-transferase Yc subunit possessing high catalytic activity for aflatoxin B1-8,9-epoxide
- PMID: 1637297
- PMCID: PMC1132762
- DOI: 10.1042/bj2850173
Molecular cloning and heterologous expression of a cDNA encoding a mouse glutathione S-transferase Yc subunit possessing high catalytic activity for aflatoxin B1-8,9-epoxide
Abstract
Resistance to the carcinogenic effects of aflatoxin B1 (AFB1) in the mouse is due to the constitutive expression of an Alpha-class glutathione S-transferase (GST), YcYc, with high detoxification activity towards AFB1-8,9-epoxide. A cDNA clone (pmusGST Yc) for a murine GST Yc polypeptide has been isolated. Sequencing has shown the cDNA insert of pmusGST Yc to be 922 bp in length, with an open reading frame of 663 bp that encodes a polypeptide of M(r) 25358. The primary structure of the murine GST Yc subunit predicted by pmusGST Yc is in complete agreement with the partial amino acid sequence of the aflatoxin-metabolizing mouse liver GST described previously [McLellan, Kerr, Cronshaw & Hayes (1991) Biochem. J. 276, 461-469]. A plasmid, termed pKK-musGST Yc, which permits the expression of the murine Yc subunit in Escherichia coli, has been constructed. The murine GST expressed in E. coli was purified and found to be catalytically active towards several GST substrates, including AFB1-8,9-epoxide. This enzyme was also found to possess electrophoretic and immunochemical properties closely similar to those of the GST Yc subunit from mouse liver. However, the GST synthesized in E. coli and the constitutive mouse liver Alpha-class GST exhibited small differences in their chromatographic behaviour during reverse-phase h.p.l.c. Automated Edman degradation revealed alanine to be the N-terminal amino acid in the GST Yc subunit expressed in E. coli, whereas the enzyme in mouse liver possesses a blocked N-terminus. Although sequencing showed that the purified Yc subunit from E. coli lacked the initiator methionine, the amino acid sequence obtained over the first eleven N-terminal residues agreed with that predicted from the cDNA clone, pmusGST Yc. Comparison of the deduced amino acid sequence of the mouse Yc polypeptide with the primary structures of the rat Alpha-class GST enzymes revealed that it is more closely related to the ethoxyquin-induced rat liver Yc2 subunit than to the constitutively expressed rat liver Yc1 subunit. The significance of the fact that both mouse Yc and rat Yc2 exhibit high catalytic activity towards AFB1-8,9-epoxide, whereas rat Yc1 possesses little activity towards this compound, is discussed in terms of structure/function.
Similar articles
-
Ethoxyquin-induced resistance to aflatoxin B1 in the rat is associated with the expression of a novel alpha-class glutathione S-transferase subunit, Yc2, which possesses high catalytic activity for aflatoxin B1-8,9-epoxide.Biochem J. 1991 Oct 15;279 ( Pt 2)(Pt 2):385-98. doi: 10.1042/bj2790385. Biochem J. 1991. PMID: 1953636 Free PMC article.
-
Cloning of cDNAs from fetal rat liver encoding glutathione S-transferase Yc polypeptides. The Yc2 subunit is expressed in adult rat liver resistant to the hepatocarcinogen aflatoxin B1.J Biol Chem. 1994 Aug 12;269(32):20707-17. J Biol Chem. 1994. PMID: 8051171
-
Regulation of aflatoxin B1-metabolizing aldehyde reductase and glutathione S-transferase by chemoprotectors.Biochem J. 1994 May 15;300 ( Pt 1)(Pt 1):117-24. doi: 10.1042/bj3000117. Biochem J. 1994. PMID: 8198522 Free PMC article.
-
Regulation of rat glutathione S-transferase A5 by cancer chemopreventive agents: mechanisms of inducible resistance to aflatoxin B1.Chem Biol Interact. 1998 Apr 24;111-112:51-67. doi: 10.1016/s0009-2797(97)00151-8. Chem Biol Interact. 1998. PMID: 9679543 Review.
-
Regulation of glutathione S-transferases and aldehyde reductase by chemoprotectors: studies of mechanisms responsible for inducible resistance to aflatoxin B1.IARC Sci Publ. 1996;(139):175-87. IARC Sci Publ. 1996. PMID: 8923030 Review.
Cited by
-
Effect of 8-oxoguanine glycosylase deficiency on aflatoxin B1 tumourigenicity in mice.Mutagenesis. 2015 May;30(3):401-9. doi: 10.1093/mutage/geu087. Epub 2015 Jan 11. Mutagenesis. 2015. PMID: 25583175 Free PMC article.
-
Reversible modification of rat liver glutathione S-transferase 3-3 with 1-chloro-2,4-dinitrobenzene: specific labelling of Tyr-115.Biochem J. 1993 Nov 15;296 ( Pt 1)(Pt 1):189-97. doi: 10.1042/bj2960189. Biochem J. 1993. PMID: 8250842 Free PMC article.
-
Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease.Free Radic Biol Med. 2015 Nov;88(Pt B):108-146. doi: 10.1016/j.freeradbiomed.2015.06.021. Epub 2015 Jun 27. Free Radic Biol Med. 2015. PMID: 26122708 Free PMC article. Review.
-
Determinants of specificity for aflatoxin B1-8,9-epoxide in alpha-class glutathione S-transferases.Biochem J. 1999 Apr 1;339 ( Pt 1)(Pt 1):95-101. Biochem J. 1999. PMID: 10085232 Free PMC article.
-
Aflatoxin B1-DNA adduct formation and mutagenicity in livers of neonatal male and female B6C3F1 mice.Toxicol Sci. 2011 Jul;122(1):38-44. doi: 10.1093/toxsci/kfr087. Epub 2011 Apr 19. Toxicol Sci. 2011. PMID: 21507988 Free PMC article.
References
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials