Morituri te salutant? Olfactory signal transduction and the role of phosphoinositides
- PMID: 16374712
- DOI: 10.1007/s11068-005-5050-z
Morituri te salutant? Olfactory signal transduction and the role of phosphoinositides
Abstract
During the past 150 years, researchers have investigated the cellular, physiological, and molecular mechanisms underlying the sense of smell. Based on these efforts, a conclusive model of olfactory signal transduction in the vertebrate's nose is now available, spanning from G-protein-mediated odorant receptors to ion channels, which are linked by a cyclic adenosine 3',5'-monophosphate-mediated signal transduction cascade. Here we review some historical milestones in the chronology of olfactory research, particularly emphasising the role of cyclic nucleotides and inositol trisphosphate as alternative second messengers in olfactory cells. We will describe the functional anatomy of the nose, outline the cellular composition of the olfactory epithelium, and describe the discovery of the molecular backbone of the olfactory signal transduction cascade. We then summarize our current model, in which cyclic adenosine monophosphate is the sole excitatory second messenger in olfactory sensory neurons. Finally, a possible significance of microvillous olfactory epithelial cells and inositol trisphosphate in olfaction will be discussed.
Similar articles
-
Rapid kinetics of second messenger formation in olfactory transduction.Nature. 1990 May 3;345(6270):65-8. doi: 10.1038/345065a0. Nature. 1990. PMID: 2158631
-
Mechanism of odorant adaptation in the olfactory receptor cell.Nature. 1997 Feb 20;385(6618):725-9. doi: 10.1038/385725a0. Nature. 1997. PMID: 9034189
-
Odorant receptors directly activate phospholipase C/inositol-1,4,5-trisphosphate coupled to calcium influx in Odora cells.J Neurochem. 2006 Mar;96(6):1591-605. doi: 10.1111/j.1471-4159.2006.03667.x. J Neurochem. 2006. PMID: 16539682
-
Chemical reception in vertebrate olfaction: evidence for multiple transduction pathways.Biol Res. 1996;29(3):333-41. Biol Res. 1996. PMID: 9278705 Review.
-
Molecular and cellular basis of human olfaction.Chem Biodivers. 2004 Dec;1(12):1857-69. doi: 10.1002/cbdv.200490142. Chem Biodivers. 2004. PMID: 17191824 Review.
Cited by
-
TRPM5-expressing microvillous cells in the main olfactory epithelium.BMC Neurosci. 2008 Nov 24;9:114. doi: 10.1186/1471-2202-9-114. BMC Neurosci. 2008. PMID: 19025635 Free PMC article.
-
Biochemical Evidence for a Putative Inositol 1,3,4,5-Tetrakisphosphate Receptor in the Olfactory System of Atlantic Salmon (Salmo salar).Neurosci J. 2013;2013:460481. doi: 10.1155/2013/460481. Epub 2013 Mar 11. Neurosci J. 2013. PMID: 26317094 Free PMC article.
-
The sense of smell, its signalling pathways, and the dichotomy of cilia and microvilli in olfactory sensory cells.BMC Neurosci. 2007 Sep 18;8 Suppl 3(Suppl 3):S1. doi: 10.1186/1471-2202-8-S3-S1. BMC Neurosci. 2007. PMID: 17903277 Free PMC article. Review.
-
CNS*2007. Abstracts of the 16th Annual Computational Neuroscience Meeting, Toronto, Canada, 7-12 July 2007.BMC Neurosci. 2007;8 Suppl 2:S1-P207. Epub 2007 Jul 6. BMC Neurosci. 2007. PMID: 17634105 No abstract available.
-
Organization and Plasticity of Sodium Channel Expression in the Mouse Olfactory and Vomeronasal Epithelia.Front Neuroanat. 2017 Apr 3;11:28. doi: 10.3389/fnana.2017.00028. eCollection 2017. Front Neuroanat. 2017. PMID: 28420967 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous