Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Mar 15;295(2):504-19.
doi: 10.1016/j.jcis.2004.09.047. Epub 2006 Jan 9.

Electroviscous cylinder-wall interactions

Affiliations

Electroviscous cylinder-wall interactions

S M Tabatabaei et al. J Colloid Interface Sci. .

Abstract

A theoretical analysis is presented to determine the forces of interaction between an electrically charged cylindrical particle and a charged plane boundary wall when the particle translates parallel to the wall and rotates around its axis in a symmetric electrolyte solution at rest. The electroviscous effects, arising from the coupling between the electrical and hydrodynamic equations, are determined as a solution of three partial differential equations, derived from R.G. Cox's general theory [J. Fluid Mech. 338 (1997) 1], for electroviscous ion concentration, electroviscous potential, and electroviscous flow field. It is assumed a priori that the double layer thickness surrounding each charged surface is much smaller than the length scale of the problem. Using the matched asymptotic expansion technique, the electroviscous forces experienced by the cylinder are explicitly determined analytically for small particle-wall distances for low and intermediate Peclet numbers. It is found that the tangential force usually increases the drag above the purely hydrodynamic drag, although for certain conditions the drag can be reduced. Similarly the normal force is usually repulsive, i.e., it is an electrokinetic lift force, but under certain conditions the normal force can be attractive.

PubMed Disclaimer

LinkOut - more resources