Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jun;38(6):845-52.
doi: 10.1016/j.bone.2005.10.013. Epub 2005 Dec 27.

Role of macrophages in LPS-induced osteoblast and PDL cell apoptosis

Affiliations

Role of macrophages in LPS-induced osteoblast and PDL cell apoptosis

Kewalin Thammasitboon et al. Bone. 2006 Jun.

Abstract

In periradicular lesions and periodontal disease, bacterial invasion leads to chronic inflammation resulting in disruption of the structural integrity of the periodontal ligament and progressive alveolar bone destruction. The pathogenesis of these conditions has been attributed not only to bacterial-induced tissue destruction but also to a defect in periodontal tissue repair. Accumulated data have also shown that lipopolysaccharide (LPS) can directly induce cell death or apoptosis in many cell types, including macrophages, osteoblasts, vascular endothelial cells, hepatocytes and myocytes. The present study hypothesized that bacterial LPS-induced apoptosis in osteoblasts and periodontal ligament fibroblasts (PDL cells) is an important contributing factor to the defect in periodontal tissue repair in periodontal and periapical disease. Macrophages have been shown to respond to bacterial LPS by increasing the production of proinflammatory cytokines. In addition, large numbers of macrophages are present in inflamed periodontal tissue. We speculated that macrophages were a potential candidate cell for mediating apoptosis in osteoblasts and PDL cells in response to bacteria-derived LPS. The macrophage-like cell line, RAW 264.7, was stimulated with LPS, and the conditioned medium was used to treat osteoblasts and PDL cells. Bacterial LPS had no direct apoptotic effect on mouse osteoblasts or PDL cells, whereas the conditioned medium from LPS-activated macrophages was able to induce apoptosis in these cells. To evaluate the contribution of tumor necrosis factor-alpha (TNF-alpha) released from macrophages on osteoblast and PDL cell apoptosis, cells were incubated with conditioned medium from LPS-treated macrophages in the presence and absence of anti-TNF-alpha neutralizing antibodies. TNF-alpha neutralizing antibody pretreatment inhibited the effect of conditioned medium from LPS-treated macrophages on osteoblast and PDL cell apoptosis in a dose-dependent manner. These results suggest that LPS could indirectly induce apoptosis in osteoblasts and PDL cells through the induction of TNF-alpha release from macrophages. These studies provide insight into a potential mechanism by which bacterial-derived LPS could contribute to defective periodontal and bone tissue repair in periodontal and periapical disease.

PubMed Disclaimer

Publication types