Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Feb 24;281(8):4969-76.
doi: 10.1074/jbc.M511902200. Epub 2005 Dec 23.

Substrate specificity and domain functions of extracellular heparan sulfate 6-O-endosulfatases, QSulf1 and QSulf2

Affiliations
Free article

Substrate specificity and domain functions of extracellular heparan sulfate 6-O-endosulfatases, QSulf1 and QSulf2

Xingbin Ai et al. J Biol Chem. .
Free article

Abstract

The extracellular sulfatases (Sulfs) are an evolutionally conserved family of heparan sulfate (HS)-specific 6-O-endosulfatases. These enzymes remodel the 6-O-sulfation of cell surface HS chains to promote Wnt signaling and inhibit growth factor signaling for embryonic tissue patterning and control of tumor growth. In this study we demonstrate that the avian HS endosulfatases, QSulf1 and QSulf2, exhibit the same substrate specificity toward a subset of trisulfated disaccharides internal to HS chains. Further, we show that both QSulfs associate exclusively with cell membrane and are enzymatically active on the cell surface to desulfate both cell surface and cell matrix HS. Mutagenesis studies reveal that conserved amino acid regions in the hydrophilic domains of QSulf1 and QSulf2 have multiple functions, to anchor Sulf to the cell surface, bind to HS substrates, and to mediate HS 6-O-endosulfatase enzymatic activity. Results of our current studies establish the hydrophilic domain (HD) of Sulf enzymes as an essential multifunctional domain for their unique endosulfatase activities and also demonstrate the extracellular activity of Sulfs for desulfation of cell surface and cell matrix HS in the control of extracellular signaling for embryonic development and tumor progression.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources