Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Dec;9(4):518-27.
doi: 10.1109/titb.2005.855566a.

Evaluation of statistical association measures for the automatic signal generation in pharmacovigilance

Affiliations

Evaluation of statistical association measures for the automatic signal generation in pharmacovigilance

Emmanuel Roux et al. IEEE Trans Inf Technol Biomed. 2005 Dec.

Abstract

Pharmacovigilance aims at detecting the adverse effects of marketed drugs. It is generally based on the spontaneous reporting of events thought to be the adverse effects of drugs. Spontaneous Reporting Systems (SRSs) supply huge databases that pharmacovigilance experts cannot exhaustively exploit without data mining tools. Data mining methods; i.e., statistical association measures in conjunction with signal generation criteria, have been proposed in the literature but there is no consensus regarding their applicability and efficiency, especially since such methods are difficult to evaluate on the basis of actual data. The objective of this paper is to evaluate association measures on simulated datasets obtained with SRS modeling. We compared association measures using the percentage of false positive signals among a given number of the most highly ranked drug-event combinations according to the values of the association measures. By considering 150 drugs and 100 adverse events, these percentages of false positives, among the 500 most highly ranked drug-event couples, vary from 1.1% to 53.4% (averages over 1000 simulated datasets). As the measures led to very different results, we could identify which measures appeared to be the most relevant for pharmacovigilance.

PubMed Disclaimer

Publication types

MeSH terms