Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Jan;55(1):1-12.

The network of glucokinase-expressing cells in glucose homeostasis and the potential of glucokinase activators for diabetes therapy

Affiliations
  • PMID: 16380470
Review

The network of glucokinase-expressing cells in glucose homeostasis and the potential of glucokinase activators for diabetes therapy

Franz M Matschinsky et al. Diabetes. 2006 Jan.

Abstract

The glucose-phosphorylating enzyme glucokinase has structural, kinetic, and molecular genetic features that are ideal for its primary role as glucose sensor in a network of neuro/endocrine sentinel cells that maintain glucose homeostasis in many vertebrates including humans. The glucokinase-containing, insulin-producing beta-cells of the pancreas take the prominent lead in this network, functioning in the aggregate as the master gland. The beta-cells are also conceptualized as the prototype for all other glucose sensor cells, which determines our current understanding of many extrapancreatic glucose sensors. About 99% of the enzyme resides, however, in the hepato-parenchymal cells and serves its second role in a high-capacity process of blood glucose clearance. Two examples strikingly illustrate how pivotal a position glucokinase has in the regulation of glucose metabolism: 1) activating and inactivating mutations of the enzyme cause hypo- and hyperglycemia syndromes in humans described collectively as "glucokinase disease" and fully explained by the glucose sensor paradigm, and 2) glucokinase activator drugs (GKAs) have been discovered that bind to an allosteric site and increase the kcat and lower the glucose S(0.5) of the enzyme. GKAs enhance glucose-stimulated insulin release from pancreatic islets and glucose disposition by the liver. They are now intensively explored to develop a novel treatment for diabetes. Future biophysical, molecular, genetic, and pharmacological studies hold much promise to unravel the evolving complexity of the glucokinase glucose sensor system.

PubMed Disclaimer

LinkOut - more resources