Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Mar;17(3):607-16.
doi: 10.1681/ASN.2005080818. Epub 2005 Dec 28.

Cellular effects of guanylin and uroguanylin

Affiliations
Review

Cellular effects of guanylin and uroguanylin

Aleksandra Sindić et al. J Am Soc Nephrol. 2006 Mar.

Abstract

Ingestion of a salty meal induces secretion of guanylin (GN) and uroguanylin (UGN) into the intestinal lumen, where they inhibit Na+ absorption and induce Cl-, HCO3-, and water secretion. Simultaneously, these hormones stimulate renal electrolyte excretion by inducing natriuresis, kaliuresis, and diuresis. GN and UGN therefore participate in the prevention of hypernatremia and hypervolemia after salty meals. The signaling pathway of GN and UGN in the intestine is well known. They activate enterocytes via guanylate cyclase C (GC-C), which leads to cGMP-dependent inhibition of Na+/H+ exchange and activation of the cystic fibrosis transmembrane regulator. In GC-C-deficient mice, GN and UGN still produce renal natriuresis, kaliuresis, and diuresis, suggesting different signaling pathways in the kidney compared with the intestine. Signaling pathways for GN and UGN in the kidney differ along the various nephron segments. In proximal tubule cells, a cGMP- and GC-C-dependent signaling was demonstrated for both peptides. In addition, UGN activates a pertussis toxin-sensitive G-protein-coupled receptor. A similar dual signaling pathway is also known for atrial natriuretic peptide. Recently, a cGMP-independent signaling pathway for GN and UGN was also shown in principal cells of the human and mouse cortical collecting duct. Because GN and UGN activate different signaling pathways in specific organs and even within the kidney, this review focuses on more recent findings on cellular effects and signaling mechanisms of these peptides and their pathophysiologic implications in the intestine and the kidney.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources