Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Dec;39(6):847-51.
doi: 10.2144/000112026.

Bulk and micropatterned conjugation of extracellular matrix proteins to characterized polyacrylamide substrates for cell mechanotransduction assays

Affiliations
Free article

Bulk and micropatterned conjugation of extracellular matrix proteins to characterized polyacrylamide substrates for cell mechanotransduction assays

Vesna Damljanović et al. Biotechniques. 2005 Dec.
Free article

Abstract

Increasing numbers of cell mechanotransduction studies are currently utilizing elastic substrates fabricated from polyacrylamide in the form of thin gels. Their versatility depends on the ability to ensure the appropriate gel stiffness and control the uniformity and geometry of extracellular matrix protein coating of the gel. Beginning with a brief quantitative emphasis on the elastic properties of polyacrylamide gels, we present an inexpensive and highly reproducible method for uniform coating with a wide variety of extracellular matrix proteins. We used a reducing agent, hydrazine hydrate, to modify nonreactive amide groups in polyacrylamide to highly reactive hydrazide groups that can form covalent bonds with aldehyde or ketone groups in oxidized proteins. This simple conjugation method overcomes the limitations of previously used photoactivatable cross-linkers: nonuniform coating due to nonuniformity of irradiation and technically challenging procedures for micropatterning. As demonstrated in our study of cell polarity during constrained migration, this conjugation method is especially effective in gel micropatterning by manual microcontact printing of protein patterns as small as 5 microm and enables numerous studies of constrained cell attachment and migration that were previously unfeasible due to high cost or difficulty in controlling the protein coating.

PubMed Disclaimer

Publication types

LinkOut - more resources