Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Nov;72(5 Pt 1):051503.
doi: 10.1103/PhysRevE.72.051503. Epub 2005 Nov 11.

Thermodynamics, structure, and dynamics of water confined between hydrophobic plates

Affiliations

Thermodynamics, structure, and dynamics of water confined between hydrophobic plates

Pradeep Kumar et al. Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Nov.

Abstract

We perform molecular dynamics simulations of 512 waterlike molecules that interact via the TIP5P potential and are confined between two smooth hydrophobic plates that are separated by 1.10 nm. We find that the anomalous thermodynamic properties of water are shifted to lower temperatures relative to the bulk by approximately 40 K. The dynamics and structure of the confined water resemble bulk water at higher temperatures, consistent with the shift of thermodynamic anomalies to lower temperature. Because of this T shift, our confined water simulations (down to T=220 K) do not reach sufficiently low temperature to observe a liquid-liquid phase transition found for bulk water at T approximately 215 K using the TIP5P potential, but we see inflections in isotherms at lower temperatures presumably due to the presence of a liquid-liquid critical point. We find that the different crystalline structures that can form for two different separations of the plates, 0.7 and 1.10 nm, have no counterparts in the bulk system, and we discuss the relevance to experiments on confined water.

PubMed Disclaimer

Similar articles

Cited by