Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Nov;72(5 Pt 2):056319.
doi: 10.1103/PhysRevE.72.056319. Epub 2005 Nov 17.

Fluid permeabilities of triply periodic minimal surfaces

Affiliations

Fluid permeabilities of triply periodic minimal surfaces

Y Jung et al. Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Nov.

Abstract

It has recently been shown that triply periodic two-phase bicontinuous composites with interfaces that are the Schwartz primitive (P) and diamond (D) minimal surfaces are not only geometrically extremal but extremal for simultaneous transport of heat and electricity. The multifunctionality of such two-phase systems has been further established by demonstrating that they are also extremal when a competition is set up between the effective bulk modulus and electrical (or thermal) conductivity of the bicontinuous composite. Here we compute the fluid permeabilities of these and other triply periodic bicontinuous structures at a porosity using the immersed-boundary finite-volume method. The other triply periodic porous media that we study include the Schoen gyroid (G) minimal surface, two different pore-channel models, and an array of spherical obstacles arranged on the sites of a simple cubic lattice. We find that the Schwartz P porous medium has the largest fluid permeability among all of the six triply periodic porous media considered in this paper. The fluid permeabilities are shown to be inversely proportional to the corresponding specific surfaces for these structures. This leads to the conjecture that the maximal fluid permeability for a triply periodic porous medium with a simply connected pore space at a porosity is achieved by the structure that globally minimizes the specific surface.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources