Continuous separation of microparticles by size with direct current-dielectrophoresis
- PMID: 16385598
- DOI: 10.1002/elps.200500558
Continuous separation of microparticles by size with direct current-dielectrophoresis
Abstract
Direct current-dielectrophoresis (DC-DEP), the induced motion of the dielectric particles in a spatially nonuniform DC electric field, is demonstrated to be a highly efficient method to separate the microparticles by size. The locally nonuniform electric field is generated by an insulating block fabricated inside a polydimethylsiloxane microchannel. The particle experiences a negative DEP (accordingly a repulsive force) at the corners of the block, where the local electric-field strength is the strongest. Thus, the particle deviates from the streamline and the degree of deviation is dependent on the DEP force (i.e., the particle size). Combined with the electrokinetic flow, mixed polystyrene particles of a few micrometers difference in diameter can be continuously separated into distinct reservoirs. For separating target particles of a specific size, it is required to simply adjust the voltage outputs of the electrodes. A numerical model based on the Lagrangian tracking method is developed to simulate the particle motion and the results showed a reasonable agreement with the experimental data.
Similar articles
-
DC-Dielectrophoretic separation of biological cells by size.Biomed Microdevices. 2008 Apr;10(2):243-9. doi: 10.1007/s10544-007-9130-y. Biomed Microdevices. 2008. PMID: 17899384
-
Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.Electrophoresis. 2009 Mar;30(5):782-91. doi: 10.1002/elps.200800637. Electrophoresis. 2009. PMID: 19197906
-
DC electrokinetic particle transport in an L-shaped microchannel.Langmuir. 2010 Feb 16;26(4):2937-44. doi: 10.1021/la902711x. Langmuir. 2010. PMID: 19852473
-
Dielectrophoresis of nanoparticles.Electrophoresis. 2004 Nov;25(21-22):3625-32. doi: 10.1002/elps.200406092. Electrophoresis. 2004. PMID: 15565698 Review.
-
Dielectrophoretic separation of bioparticles in microdevices: a review.Electrophoresis. 2014 Mar;35(5):691-713. doi: 10.1002/elps.201300424. Epub 2014 Feb 4. Electrophoresis. 2014. PMID: 24338825 Review.
Cited by
-
Transitioning Streaming to Trapping in DC Insulator-based Dielectrophoresis for Biomolecules.Sens Actuators B Chem. 2012 Oct;173:668-675. doi: 10.1016/j.snb.2012.07.080. Sens Actuators B Chem. 2012. PMID: 23441049 Free PMC article.
-
The development of malaria diagnostic techniques: a review of the approaches with focus on dielectrophoretic and magnetophoretic methods.Malar J. 2016 Jul 12;15(1):358. doi: 10.1186/s12936-016-1400-9. Malar J. 2016. PMID: 27405995 Free PMC article. Review.
-
Enhanced Throughput for Electrokinetic Manipulation of Particles and Cells in a Stacked Microfluidic Device.Micromachines (Basel). 2016 Sep 1;7(9):156. doi: 10.3390/mi7090156. Micromachines (Basel). 2016. PMID: 30404325 Free PMC article.
-
Label-free isolation of circulating tumor cells in microfluidic devices: Current research and perspectives.Biomicrofluidics. 2013 Jan 24;7(1):11810. doi: 10.1063/1.4780062. eCollection 2013. Biomicrofluidics. 2013. PMID: 24403992 Free PMC article.
-
Phononic-Crystal-Based Particle Sieving in Continuous Flow: Numerical Simulations.Micromachines (Basel). 2022 Dec 9;13(12):2181. doi: 10.3390/mi13122181. Micromachines (Basel). 2022. PMID: 36557480 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources