Mode of action and subsite studies of the guluronan block-forming mannuronan C-5 epimerases AlgE1 and AlgE6
- PMID: 16390328
- PMCID: PMC1422759
- DOI: 10.1042/BJ20051804
Mode of action and subsite studies of the guluronan block-forming mannuronan C-5 epimerases AlgE1 and AlgE6
Abstract
AlgE1, AlgE5 and AlgE6 are members of a family of mannuronan C-5 epimerases encoded by the bacterium Azotobacter vinelandii, and are active in the biosynthesis of alginate, where they catalyse the post-polymerization conversion of beta-D-mannuronic acid (M) residues into alpha-L-guluronic acid residues (G). All enzymes show preference for introducing G-residues neighbouring a pre-existing G. They also have the capacity to convert single M residues flanked by G, thus 'condensing' G-blocks to form almost homopolymeric guluronan. Analysis of the length and distribution of G-blocks based on specific enzyme degradation combined with size-exclusion chromatography, electrospray ionization MS, HPAEC-PAD (high-performance anion-exchange chromatography and pulsed amperometric detection), MALDI (matrix-assisted laser-desorption ionization)-MS and NMR revealed large differences in block length and distribution generated by AlgE1 and AlgE6, probably reflecting their different degree of processivity. When acting on polyMG as substrates, AlgE1 initially forms only long homopolymeric G-blocks >50, while AlgE6 gives shorter blocks with a broader block size distribution. Analyses of the AlgE1 and AlgE6 subsite specificities by the same methodology showed that a mannuronan octamer and heptamer respectively were the minimum substrate chain lengths needed to accommodate enzyme activities. The fourth M residue from the non-reducing end is epimerized first by both enzymes. When acting on MG-oligomers, AlgE1 needed a decamer while AlgE6 an octamer to accommodate activity. By performing FIA (flow injection analysis)-MS on the lyase digests of epimerized and standard MG-oligomers, the M residue in position 5 from the non-reducing end was preferentially attacked by both enzymes, creating an MGMGGG-sequence (underlined and boldface indicate the epimerized residue).
Figures










Similar articles
-
Biochemical analysis of the processive mechanism for epimerization of alginate by mannuronan C-5 epimerase AlgE4.Biochem J. 2004 Jul 1;381(Pt 1):155-64. doi: 10.1042/BJ20031265. Biochem J. 2004. PMID: 15032753 Free PMC article.
-
Time-resolved 1H and 13C NMR spectroscopy for detailed analyses of the Azotobacter vinelandii mannuronan C-5 epimerase reaction.Biochim Biophys Acta. 2002 Mar 15;1570(2):104-12. doi: 10.1016/s0304-4165(02)00195-2. Biochim Biophys Acta. 2002. PMID: 11985894
-
Structural and functional characterization of the R-modules in alginate C-5 epimerases AlgE4 and AlgE6 from Azotobacter vinelandii.J Biol Chem. 2014 Nov 7;289(45):31382-96. doi: 10.1074/jbc.M114.567008. Epub 2014 Sep 29. J Biol Chem. 2014. PMID: 25266718 Free PMC article.
-
Hexuronyl C5-epimerases in alginate and glycosaminoglycan biosynthesis.Biochimie. 2001 Aug;83(8):819-30. doi: 10.1016/s0300-9084(01)01313-x. Biochimie. 2001. PMID: 11530215 Review.
-
Mannuronate C-5 epimerases and their use in alginate modification.Essays Biochem. 2023 Apr 18;67(3):615-627. doi: 10.1042/EBC20220151. Essays Biochem. 2023. PMID: 36876890 Review.
Cited by
-
Exploiting Mannuronan C-5 Epimerases in Commercial Alginate Production.Mar Drugs. 2020 Nov 18;18(11):565. doi: 10.3390/md18110565. Mar Drugs. 2020. PMID: 33218095 Free PMC article.
-
Guluronic acid content as a factor affecting turbidity removal potential of alginate.Environ Sci Pollut Res Int. 2016 Nov;23(22):22568-22576. doi: 10.1007/s11356-016-7475-6. Epub 2016 Aug 24. Environ Sci Pollut Res Int. 2016. PMID: 27557959
-
Alginate Hydrogels with Tuneable Properties.Adv Biochem Eng Biotechnol. 2021;178:37-61. doi: 10.1007/10_2020_161. Adv Biochem Eng Biotechnol. 2021. PMID: 33547500
-
Study on antibacterial alginate-stabilized copper nanoparticles by FT-IR and 2D-IR correlation spectroscopy.Int J Nanomedicine. 2012;7:3597-612. doi: 10.2147/IJN.S32648. Epub 2012 Jul 11. Int J Nanomedicine. 2012. PMID: 22848180 Free PMC article.
-
Mode of Action of AlgE1: A Modular Mannuronate C-5 Epimerase.Biochemistry. 2025 Jul 15;64(14):3030-3044. doi: 10.1021/acs.biochem.5c00156. Epub 2025 Jun 23. Biochemistry. 2025. PMID: 40549830 Free PMC article.
References
-
- Painter T. J. Algal polysaccharides. In: Aspinall G. O., editor. The Polysaccharides, vol. 2. New York: Academic Press; 1983. pp. 195–285.
-
- Gorin P. A. J., Spencer J. F. T. Exocellular alginic acid from Azotobacter vinelandii. Can. J. Chem. 1966;44:993–998.
-
- Govan J. R. W., Fyfe J. A. M., Jarman T. R. Isolation of alginate-producing mutants of Pseudomonas fluorescens, Pseudomonas putida and Pseudomonas mendocina. J. Gen. Microbiol. 1981;125:217–220. - PubMed
-
- Ertesvåg H., Høidal H. K., Hals I. K., Rian A., Doseth B., Valla S. A family of modular type mannuronan C-5 epimerase genes controls alginate structure in Azotobacter vinelandii. Mol. Microbiol. 1995;16:719–731. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous