Steady-state and transient ultraviolet resonance Raman spectrometer for the 193-270 nm spectral region
- PMID: 16390595
- DOI: 10.1366/000370205775142511
Steady-state and transient ultraviolet resonance Raman spectrometer for the 193-270 nm spectral region
Abstract
We describe a state-of-the-art tunable ultraviolet (UV) Raman spectrometer for the 193-270 nm spectral region. This instrument allows for steady-state and transient UV Raman measurements. We utilize a 5 kHz Ti-sapphire continuously tunable laser (approximately 20 ns pulse width) between 193 nm and 240 nm for steady-state measurements. For transient Raman measurements we utilize one Coherent Infinity YAG laser to generate nanosecond infrared (IR) pump laser pulses to generate a temperature jump (T-jump) and a second Coherent Infinity YAG laser that is frequency tripled and Raman shifted into the deep UV (204 nm) for transient UV Raman excitation. Numerous other UV excitation frequencies can be utilized for selective excitation of chromophoric groups for transient Raman measurements. We constructed a subtractive dispersion double monochromator to minimize stray light. We utilize a new charge-coupled device (CCD) camera that responds efficiently to UV light, as opposed to the previous CCD and photodiode detectors, which required intensifiers for detecting UV light. For the T-jump measurements we use a second camera to simultaneously acquire the Raman spectra of the water stretching bands (2500-4000 cm(-1)) whose band-shape and frequency report the sample temperature.
Similar articles
-
Simple nanosecond to minutes transient absorption spectrophotometer.Appl Spectrosc. 2005 Dec;59(12):1534-40. doi: 10.1366/000370205775142476. Appl Spectrosc. 2005. PMID: 16390594
-
Tunable kHz deep ultraviolet (193-210 nm) laser for Raman application.Appl Spectrosc. 2005 Jun;59(6):776-81. doi: 10.1366/0003702054280702. Appl Spectrosc. 2005. PMID: 16053544
-
Construction of a subnanosecond time-resolved, high-resolution ultraviolet resonance Raman measurement system and its application to reveal the dynamic structures of proteins.Appl Spectrosc. 2008 Jan;62(1):30-7. doi: 10.1366/000370208783412573. Appl Spectrosc. 2008. PMID: 18230205
-
[Spectral analysis in nanometer material science].Guang Pu Xue Yu Guang Pu Fen Xi. 2002 Jun;22(3):504-10. Guang Pu Xue Yu Guang Pu Fen Xi. 2002. PMID: 12938350 Review. Chinese.
-
[UV/Vis absorption, infrared and Raman spectroscopy].Tanpakushitsu Kakusan Koso. 2004 Aug;49(11 Suppl):1693-9. Tanpakushitsu Kakusan Koso. 2004. PMID: 15377002 Review. Japanese. No abstract available.
Cited by
-
UV Resonance Raman Structural Characterization of an (In)soluble Polyglutamine Peptide.J Phys Chem B. 2019 Feb 28;123(8):1749-1763. doi: 10.1021/acs.jpcb.8b10783. Epub 2019 Feb 19. J Phys Chem B. 2019. PMID: 30717595 Free PMC article.
-
Circular dichroism and ultraviolet resonance Raman indicate little Arg-Glu side chain α-helix peptide stabilization.J Phys Chem B. 2011 Apr 14;115(14):4234-43. doi: 10.1021/jp112238q. Epub 2011 Mar 22. J Phys Chem B. 2011. PMID: 21425805 Free PMC article.
-
Lowest energy electronic transition in aqueous Cl(-) salts: Cl(-) → (H2O)6 charge transfer transition.J Phys Chem A. 2011 Sep 1;115(34):9345-8. doi: 10.1021/jp1085729. Epub 2010 Nov 24. J Phys Chem A. 2011. PMID: 21105675 Free PMC article.
-
UV resonance Raman finds peptide bond-Arg side chain electronic interactions.J Phys Chem B. 2011 May 12;115(18):5659-64. doi: 10.1021/jp112174s. Epub 2011 Mar 16. J Phys Chem B. 2011. PMID: 21410150 Free PMC article.
-
Hydrogen bonding and solvent polarity markers in the uv resonance raman spectrum of tryptophan: application to membrane proteins.J Phys Chem B. 2009 Nov 5;113(44):14769-78. doi: 10.1021/jp905473y. J Phys Chem B. 2009. PMID: 19817473 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous