Improvement of alpha-amylase production by modulation of ribosomal component protein S12 in Bacillus subtilis 168
- PMID: 16391027
- PMCID: PMC1352260
- DOI: 10.1128/AEM.72.1.71-77.2006
Improvement of alpha-amylase production by modulation of ribosomal component protein S12 in Bacillus subtilis 168
Abstract
The capacity of ribosomal modification to improve antibiotic production by Streptomyces spp. has already been demonstrated. Here we show that introduction of mutations that produce streptomycin resistance (str) also enhances alpha-amylase (and protease) production by a strain of Bacillus subtilis as estimated by measuring the enzyme activity. The str mutations are point mutations within rpsL, the gene encoding the ribosomal protein S12. In vivo as well as in vitro poly(U)-directed cell-free translation systems showed that among the various rpsL mutations K56R (which corresponds to position 42 in E. coli) was particularly effective at enhancing alpha-amylase production. Cells harboring the K56R mutant ribosome exhibited enhanced translational activity during the stationary phase of cell growth. In addition, the K56R mutant ribosome exhibited increased 70S complex stability in the presence of low Mg2+ concentrations. We therefore conclude that the observed increase in protein synthesis activity by the K56R mutant ribosome reflects increased stability of the 70S complex and is responsible for the increase in alpha-amylase production seen in the affected strain.
Figures






Similar articles
-
[Effect of ribosomal protein mutation on the expression of alkaline protease gene in Bacillus subtilis].Yi Chuan Xue Bao. 1993;20(4):362-73. Yi Chuan Xue Bao. 1993. PMID: 8251196 Chinese.
-
Intracellular expression of Vitreoscilla hemoglobin (VHb) enhances total protein secretion and improves the production of alpha-amylase and neutral protease in Bacillus subtilis.Biotechnol Prog. 1996 Jan-Feb;12(1):31-9. doi: 10.1021/bp950065j. Biotechnol Prog. 1996. PMID: 8845107
-
Expression and secretion of an acid-stable alpha-amylase gene in Bacillus Subtilis by SacB promoter and signal peptide.Biotechnol Lett. 2005 Nov;27(21):1731-7. doi: 10.1007/s10529-005-2743-4. Biotechnol Lett. 2005. PMID: 16247683
-
Ribosome engineering and secondary metabolite production.Adv Appl Microbiol. 2004;56:155-84. doi: 10.1016/S0065-2164(04)56005-7. Adv Appl Microbiol. 2004. PMID: 15566979 Review. No abstract available.
-
[Advance in microbial ribosome engineering].Wei Sheng Wu Xue Bao. 2009 Aug;49(8):981-6. Wei Sheng Wu Xue Bao. 2009. PMID: 19835157 Review. Chinese.
Cited by
-
Insights into microbial cryptic gene activation and strain improvement: principle, application and technical aspects.J Antibiot (Tokyo). 2017 Jan;70(1):25-40. doi: 10.1038/ja.2016.82. Epub 2016 Jul 6. J Antibiot (Tokyo). 2017. PMID: 27381522 Review.
-
New strategies for drug discovery: activation of silent or weakly expressed microbial gene clusters.Appl Microbiol Biotechnol. 2013 Jan;97(1):87-98. doi: 10.1007/s00253-012-4551-9. Epub 2012 Nov 11. Appl Microbiol Biotechnol. 2013. PMID: 23143535 Free PMC article. Review.
-
Ribosome-Engineered Lacticaseibacillus rhamnosus Strain GG Exhibits Cell Surface Glyceraldehyde-3-Phosphate Dehydrogenase Accumulation and Enhanced Adhesion to Human Colonic Mucin.Appl Environ Microbiol. 2020 Oct 1;86(20):e01448-20. doi: 10.1128/AEM.01448-20. Print 2020 Oct 1. Appl Environ Microbiol. 2020. PMID: 32801170 Free PMC article.
-
Combinatorial Effect of ARTP Mutagenesis and Ribosome Engineering on an Industrial Strain of Streptomyces albus S12 for Enhanced Biosynthesis of Salinomycin.Front Bioeng Biotechnol. 2019 Sep 3;7:212. doi: 10.3389/fbioe.2019.00212. eCollection 2019. Front Bioeng Biotechnol. 2019. PMID: 31552238 Free PMC article.
-
Identification and characterization of a novel multidrug resistance operon, mdtRP (yusOP), of Bacillus subtilis.J Bacteriol. 2009 May;191(10):3273-81. doi: 10.1128/JB.00151-09. Epub 2009 Mar 13. J Bacteriol. 2009. PMID: 19286808 Free PMC article.
References
-
- Bertoldo, C., and G. Antranikian. 2002. Starch-hydrolyzing enzymes from thermophilic archaea and bacteria. Curr. Opin. Chem. Biol. 6:151-160. - PubMed
-
- Carter, A. P., W. M. Clemons, D. E. Brodersen, R. J. Morgan-Warren, B. T. Wimberly, and V. Ramakrishnan. 2000. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407:340-348. - PubMed
-
- Cundliffe, E. 1990. Recognition sites for antibiotics within rRNA, p. 479-490. In A. D. W. E. Hill, R. A. Garrett, P. B. Moore, D. Schlessinger, and J. R. Warner (ed.), The ribosome: structure, function, and evolution. American Society for Microbiology, Washington, D. C.
-
- Fujimoto, Z., K. Takase, N. Doui, M. Momma, T. Matsumoto, and H. Mizuno. 1998. Crystal structure of a catalytic-site mutant α-amylase from Bacillus subtilis complexed with maltopentaose. J. Mol. Biol. 277:393-407. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous