Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Dec 15;123(23):234904.
doi: 10.1063/1.2137710.

Density-functional theory and Monte Carlo simulation study on the electric double layer around DNA in mixed-size counterion systems

Affiliations

Density-functional theory and Monte Carlo simulation study on the electric double layer around DNA in mixed-size counterion systems

Ke Wang et al. J Chem Phys. .

Abstract

A density-functional approach and canonical Monte Carlo simulations are presented for describing the ionic microscopic structure around the DNA molecule immersed in mixed-size counterion solutions. In the density-functional approach, the hard-sphere contribution to the Helmholtz energy functional is obtained from the modified fundamental measure theory [Y.-X. Yu and J. Z. Wu, J. Chem. Phys. 117, 10156 (2002)], and the electrostatic contribution is evaluated through a quadratic functional Taylor expansion. The new theory is suitable to the systems containing ions of arbitrary sizes and valences. In the established canonical Monte Carlo simulation, an iterative self-consistent method is used to evaluate the long-range energy, and another iterative algorithm is adopted to obtain desired bulk ionic concentrations. The ion distributions from the density-functional theory (DFT) are in good agreement with those from the corresponding Monte Carlo (MC) simulations. It is found that the ratio of the bulk concentrations of two species of counterions (cations) makes significant contribution to the ion distributions in the vicinity of DNA. Comparisons with the electrostatic potential profiles from the MC simulations show that the accuracy of the DFT becomes low when a small divalent cation exists. Both the DFT and MC simulation results illustrate that the electrostatic potential at the surface of DNA increases as the anion diameter or the total cation concentration is increased and decreases as the diameter of one cation species is increased. The calculation of electrostatic potential using real ion diameters shows that the accuracy of DFT predictions for divalent ions is also acceptable.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources