Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jan;114(1):29-33.
doi: 10.1289/ehp.8335.

Fine particulate air pollution and mortality in nine California counties: results from CALFINE

Affiliations

Fine particulate air pollution and mortality in nine California counties: results from CALFINE

Bart Ostro et al. Environ Health Perspect. 2006 Jan.

Abstract

Many epidemiologic studies provide evidence of an association between daily counts of mortality and ambient particulate matter<10 microm in diameter (PM10). Relatively few studies, however, have investigated the relationship of mortality with fine particles [PM<2.5 microm in diameter (PM2.5)], especially in a multicity setting. We examined associations between PM2.5 and daily mortality in nine heavily populated California counties using data from 1999 through 2002. We considered daily counts of all-cause mortality and several cause-specific subcategories (respiratory, cardiovascular, ischemic heart disease, and diabetes). We also examined these associations among several subpopulations, including the elderly (>65 years of age), males, females, non-high school graduates, whites, and Hispanics. We used Poisson multiple regression models incorporating natural or penalized splines to control for covariates that could affect daily counts of mortality, including time, seasonality, temperature, humidity, and day of the week. We used meta-analyses using random-effects models to pool the observations in all nine counties. The analysis revealed associations of PM2.5 levels with several mortality categories. Specifically, a 10-microg/m3 change in 2-day average PM2.5 concentration corresponded to a 0.6% (95% confidence interval, 0.2-1.0%) increase in all-cause mortality, with similar or greater effect estimates for several other subpopulations and mortality subcategories, including respiratory disease, cardiovascular disease, diabetes, age>65 years, females, deaths out of the hospital, and non-high school graduates. Results were generally insensitive to model specification and the type of spline model used. This analysis adds to the growing body of evidence linking PM2.5 with daily mortality.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Anderson HR, Atkinson RW, Peacock JL, Sweeting MJ, Marston L. Ambient particulate matter and health effects. Publication bias in studies of short-term associations. Epidemiology. 2005;16:155–163. - PubMed
    1. Blanchard C. 2003. Spatial and temporal characterization of particulate matter. In: Particulate Matter Science for Policy Makers: A NARSTO Assessment (McMurry PH, Shepherd MF, Vickery JS, eds). Cambridge, UK:Cambridge University Press, 191–231.
    1. Borja-Aburto VH, Castillejos M, Gold DR, Bierzwinski S, Loomis D. Mortality and ambient fine particles in southwest Mexico City, 1993–1995. Environ Health Perspect. 1998;106:849–855. - PMC - PubMed
    1. Braga AL, Zanobetti A, Schwartz J. The lag structure between particulate air pollution and respiratory and cardiovascular deaths in 10 US cities. J Occup Environ Med. 2001;43:927–933. - PubMed
    1. Burnett RT, Goldberg MS. 2003. Size-fractionated particulate mass and daily mortality in eight Canadian cities. In: Revised Analyses of Time-Series Studies of Air Pollution and Health. Special Report. Boston:Health Effects Institute, 85–90.