Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Feb;12(1):29-42.
doi: 10.1177/1073858405280553.

Psychophysics of CNS pain-related activity: binary and analog channels and memory encoding

Affiliations
Review

Psychophysics of CNS pain-related activity: binary and analog channels and memory encoding

C A Bagley et al. Neuroscientist. 2006 Feb.

Abstract

The forebrain neuronal system signaling pain has been poorly characterized. The pain pathway afferent to the thalamus may be a labeled line consisting of neurons in the pain-signaling pathway to the brain (spinothalamic tract, STT) that respond only to painful stimuli. It has recently been proposed that the STT contains a series of analog-labeled lines, each signaling a different aspect of the internal state of the body (interoception), for example, visceral/cold/itch sensations. In this view, pain is the unpleasant emotion produced by disequilibrium of the internal state. The authors now show that stimulation of an STT receiving zone (thalamic principal somatic sensory nucleus, ventral caudal) in awake humans produces two different exteroceptive responses. The first is a binary response signaling the presence of painful stimuli. The second is an analog response in which nonpainful and painful sensations are graded with intensity of the stimulus. Such stimulation can evoke both the sensory and emotional components of previously experienced pain. These results illustrate the diverse functions of human pain signaling pathways.

PubMed Disclaimer

Similar articles

Publication types

LinkOut - more resources