Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jan;29(1):43-8.
doi: 10.1248/bpb.29.43.

Effects of neopterin on the hematopoietic microenvironment of senescence-accelerated mice (SAM)

Affiliations
Free article

Effects of neopterin on the hematopoietic microenvironment of senescence-accelerated mice (SAM)

Emiko Kanbe et al. Biol Pharm Bull. 2006 Jan.
Free article

Abstract

The pteridine neopterin (NP) is produced by monocytes and is known to be a useful marker of immunological activation, although, it remains elusive whether neopterin itself exhibits biological functions. Recently, we found that NP stimulates hematopoietic cell proliferation and differentiation by activating bone marrow stromal cell function. In order to elucidate the biological effect of NP on stromal cells, its effects on hematopoiesis was determined in the mouse model of age-related stromal impairment, senescence-accelerated mice (SAMs). An intraperitoneal administration of NP increased the number of peripheral leukocytes and CFU-GM in the bone marrow and spleen of young SAMs, however, no increase of CFU-GM in old SAMs (stromal impairment) was observed when compared with young SAMs. NP also increased the CFU-GM colony formation of bone marrow and spleen cells from young SAMs in a soft agar culture system, but it did not enhance CFU-GM colony formation of cells from old SAMs cultured in this system. Treatment with NP induced the production of hematopoietic stimulating factors, including IL-6 and GM-CSF, by bone marrow stromal cells from young SAMs but stromal cells from old SAMs did not respond to NP stimulation. Further studies will be required to clarify the mechanism by which NP stimulates the production of hematopoietic growth factors from stromal cells, the results of this study indicate that NP is a potent hematopoietic regulatory factor by activating stromal cell function(s).

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances