Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Dec;15(4):284-97.
doi: 10.1089/oli.2005.15.284.

Functional analysis of 114 exon-internal AONs for targeted DMD exon skipping: indication for steric hindrance of SR protein binding sites

Affiliations

Functional analysis of 114 exon-internal AONs for targeted DMD exon skipping: indication for steric hindrance of SR protein binding sites

Annemieke Aartsma-Rus et al. Oligonucleotides. 2005 Dec.

Abstract

As small molecule drugs for Duchenne muscular dystrophy (DMD), antisense oligonucleotides (AONs) have been shown to restore the disrupted reading frame of DMD transcripts by inducing specific exon skipping. This allows the synthesis of largely functional dystrophin proteins and potential conversion of severe DMD into milder Becker muscular dystrophy (BMD) phenotypes. We have previously described 37 exon-internal AONs that induce skipping of 14 DMD exons in human control myotube cultures. Here, we report 77 new AONs, effectively targeting an additional 21 exons. Of the 114 AONs thus far tested, 72 (67%) were effective. AON design initially was based on a partial overlap with predicted open secondary structures in the target RNA. We have analyzed various AON and target exon parameters in retrospect. Interestingly, we observed significantly higher SF2/ASF, SC35, and SRp40 values (as predicted by ESEfinder) for effective AONs when compared with ineffective AONs. In addition, the distance to the 3' splice site was significantly smaller for effective AONs. No other significant correlations were observed. Our results suggest that effective exon-internal AONs primarily act by blocking SR binding sites (which often correspond to open structures) and that ESEfinder may be used to refine AON design for DMD and other genes.

PubMed Disclaimer

Publication types

LinkOut - more resources