Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Feb;34(1):17-25.
doi: 10.1007/s00240-005-0006-4. Epub 2006 Jan 6.

Artificial neural networks for assessing the risk of urinary calcium stone among men

Affiliations

Artificial neural networks for assessing the risk of urinary calcium stone among men

Bertrand Dussol et al. Urol Res. 2006 Feb.

Abstract

The pathophysiology of idiopathic calcium oxalate nephrolithiasis involves metabolic abnormalities. Previous studies gave conflicting results about the metabolic factors in stone formers. Artificial neural networks (ANN) are new methods based on computer programming that have outperformed conventional methods in prediction of outcomes in different medical applications. The aim of our study was to compare with ANN the clinical and biochemical parameters implicated in urinary calcium stone between stone formers (SF) and controls (C). We compared 11 clinical and biochemical variables among 119 male idiopathic calcium oxalate SF and 96 C by univariate and multivariate statistical analyses. Univariate analyses included discriminant analysis, logistic regression analysis, and ANN. For multivariate analyses, stepwise discriminant analysis and ANN were performed. Variables included age, body mass index (BMI), family history of nephrolithiasis, supersaturation with respect to calcium oxalate, calcemia, and 24-h urinary calcium, oxalate, uric acid, urea, sodium, and citrate. With univariate and multivariate analyses, ANN were as efficient as classical statistical analyses in discriminating the different parameters. The sensitivity, the specificity, and the percentage of correctly classified patients were similar in all analyses. With ANN, supersaturation (receiver operating characteristic, ROC curves index 0.73) and urea (ROC 0.72) were the most discriminant followed by family history and urinary calcium (ROC 0.67). ROC index was 0.63 for citrate, 0.61 for oxalate and urate, 0.60 for sodium and calcemia, 0.58 for age, and 0.56 for BMI, but these parameters were not statistically different between SF and C. ANN gave additional information since they made it possible to determine the cut-off values of the parameters and their predictive power. Cut-off values for being a stone former were 8.9 for supersaturation and 363 mmol/day for urinary urea with a predictive power of 0.69 and 0.70, respectively. Univariate and multivariate analysis evidenced supersaturation and 24-h urinary urea excretion as the most discriminant parameters between the two populations. In addition to high supersaturation, the negative impact of protein intake was confirmed.

PubMed Disclaimer

References

    1. J Fam Pract. 1993 Mar;36(3):297-303 - PubMed
    1. Br J Surg. 1958 Jul;46(195):10-8 - PubMed
    1. Kidney Int. 2001 Jun;59(6):2273-81 - PubMed
    1. Clin Geriatr Med. 1990 Feb;6(1):115-29 - PubMed
    1. Nephrol Dial Transplant. 1998 Mar;13(3):617-22 - PubMed

Publication types

Substances

LinkOut - more resources