Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 Feb 15;83(3):392-402.
doi: 10.1002/jnr.20742.

Brain dysmyelination and recovery assessment by noninvasive in vivo diffusion tensor magnetic resonance imaging

Affiliations
Comparative Study

Brain dysmyelination and recovery assessment by noninvasive in vivo diffusion tensor magnetic resonance imaging

Laura A Harsan et al. J Neurosci Res. .

Abstract

Diffusion tensor magnetic resonance imaging (DT-MRI) was applied for in vivo quantification of myelin loss and regeneration. A transgenic mouse line (Oligo-TTK) expressing a truncated form of the herpes simplex virus 1 thymidine kinase gene (hsv1-tk) in oligodendrocytes was studied along with two induced phenotypes of myelin pathology. Myelin loss and axonal abnormalities differentially affect values of DT-MRI parameters in the brain of transgenic mice. Changes in the anisotropy of the white matter were assessed by calculating and mapping the radial (D perpendicular) and axial (D parallel) water diffusion to axonal tracts and fractional anisotropy (FA). A significant increase in D perpendicular attributed to the lack of myelin was observed in all selected brain white matter tracts in dysmyelinated mice. Lower D parallel values were consistent with the histological observation of axonal modifications, including reduced axonal caliber and overexpression of neurofilaments and III beta-tubulin. We show clearly that myelination and axonal changes play a role in the degree of diffusion anisotropy, because FA was significantly decreased in dysmyelinated brain. Importantly, myelin reparation during brain postnatal development induced a decrease in the magnitude of D( perpendicular) and an increase in FA compared with the same brain before recovery. The progressive increase in D parallel values was attributed to the gain in normal axonal morphology. This regeneration was confirmed by the detection of enlarged oligodendrocyte population, newly formed myelin sheaths around additional axons, and a gradual increase in axonal caliber.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources