Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jan 10;16(1):80-8.
doi: 10.1016/j.cub.2005.11.033.

Ken & barbie selectively regulates the expression of a subset of Jak/STAT pathway target genes

Affiliations
Free article

Ken & barbie selectively regulates the expression of a subset of Jak/STAT pathway target genes

Natalia I Arbouzova et al. Curr Biol. .
Free article

Abstract

A limited number of evolutionarily conserved signal transduction pathways are repeatedly reused during development to regulate a wide range of processes. Here we describe a new negative regulator of JAK/STAT signaling and identify a potential mechanism by which the pleiotropy of responses resulting from pathway activation is generated in vivo. As part of a genetic interaction screen, we have identified Ken & Barbie (Ken) , which is an ortholog of the mammalian proto-oncogene BCL6 , as a negative regulator of the JAK/STAT pathway. Ken genetically interacts with the pathway in vivo and recognizes a DNA consensus sequence overlapping that of STAT92E in vitro. Tissue culture-based assays demonstrate the existence of Ken-sensitive and Ken-insensitive STAT92E binding sites, while ectopically expressed Ken is sufficient to downregulate a subset of JAK/STAT pathway target genes in vivo. Finally, we show that endogenous Ken specifically represses JAK/STAT-dependent expression of ventral veins lacking (vvl) in the posterior spiracles. Ken therefore represents a novel regulator of JAK/STAT signaling whose dynamic spatial and temporal expression is capable of selectively modulating the transcriptional repertoire elicited by activated STAT92E in vivo.

PubMed Disclaimer

Publication types

MeSH terms