Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 Feb;176(2):153-63.
doi: 10.1007/s00360-005-0037-8. Epub 2005 Oct 27.

Photoperiod regulates leptin sensitivity in field voles, Microtus agrestis

Affiliations
Comparative Study

Photoperiod regulates leptin sensitivity in field voles, Microtus agrestis

E Król et al. J Comp Physiol B. 2006 Feb.

Abstract

We have previously shown that cold-acclimated (8 degrees C) male field voles (Microtus agrestis) transferred from short (SD, 8:16 h L:D) to long photoperiod (LD, 16:8 h L:D) exhibit increases in body mass, adiposity and food intake. To assess whether these increases were associated with decreased leptin sensitivity, we infused LD and SD voles with physiological doses of murine leptin (or saline) delivered peripherally for 7 days via mini-osmotic pumps. Measurements were made of body mass (weight-reducing effect of leptin), food intake (anorectic effect of leptin) and gene expression of uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) (thermogenic effect of leptin). The SD animals were sensitive to the weight-reducing effects of leptin (mean body mass decrease of 1.2 g over 7 days) and appetite-reducing effect of leptin (mean food intake decrease of 2.5 g over 7 days), whereas LD voles were resistant to the hormone treatment. The switch from a leptin-sensitive to leptin-resistant state appears to act as a desensitisation mechanism that allows voles transferred from SD to LD to ignore elevated leptin levels generated by increased body fat and accumulate adipose tissue without stimulating compensatory changes opposing the weight gain. Neither SD nor LD voles responded to infusion of leptin by changes in BAT UCP1 gene expression, suggesting dissociation of anorectic and thermogenic effects of leptin, possibly related to chronic cold exposure. Our results indicate that cold-acclimated voles show photoperiod-regulated changes in leptin sensitivity and may provide an attractive model for elucidating molecular mechanisms of leptin resistance.

PubMed Disclaimer

References

    1. Am J Physiol. 1997 Jul;273(1 Pt 1):E226-30 - PubMed
    1. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1997 Nov;118(3):405-12 - PubMed
    1. J Biol Rhythms. 2001 Feb;16(1):76-86 - PubMed
    1. Obes Res. 2001 Sep;9(9):579-88 - PubMed
    1. Nat Neurosci. 1998 Aug;1(4):271-2 - PubMed

Publication types

LinkOut - more resources