Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005;24(1-4):77-87.
doi: 10.1002/biof.5520240109.

Carnosine and related dipeptides as quenchers of reactive carbonyl species: from structural studies to therapeutic perspectives

Affiliations

Carnosine and related dipeptides as quenchers of reactive carbonyl species: from structural studies to therapeutic perspectives

Giancarlo Aldini et al. Biofactors. 2005.

Abstract

Carnosine (beta-alanyl-L-histidine) and related peptides such as homocarnosine (gamma-amino-butyryl-histidine), balenine beta-alanyl-L-3-methylhistidine) and anserine beta-alanyl-L-1-methylhistidine) are histidine-containing dipeptides (HD) particularly abundant in excitable tissues such as nervous system and skeletal muscle. Although their biochemical role is still unknown, several evidences indicate that these endogenous compounds act as quenchers of reactive and cytotoxic carbonyl species. In this presentation we will review the structural evidences and ex vivo data supporting this hypothesis. We first elucidated the reaction mechanism of carnosine as quencher of alpha, beta-unsaturated aldehydes such as 4-hydroxy-trans-2,3-nonenal (HNE) and acrolein (ACR) and then demonstrated the efficacy of carnosine and related peptides as detoxifying agents of HNE in spontaneously oxidized rat skeletal muscle, by detecting the corresponding HNE-Michael adducts in the crude biological matrix by liquid chromatography/electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Finally, we set-up and validated a sensitive, selective and specific LC-ESI-MS/MS method for the determination of HD and of the corresponding HNE-Michael adducts to monitor their profile in physiological (aging) and pathological conditions (diabetes, atherosclerosis) characterized by a carbonyl-mediated degenerative overload. The results obtained, beside to give a contribution to the understanding of the biochemical role of histidine-dipeptides, provide a strong rational to the design of novel derivatives, active as exogenous agents able to detoxify carbonyl compounds.

PubMed Disclaimer

Publication types

LinkOut - more resources