Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Jan;100(1):2-8.
doi: 10.1254/jphs.fmj05003x2. Epub 2006 Jan 11.

Molecular mechanisms and therapeutic strategies of chronic renal injury: physiological role of angiotensin II-induced oxidative stress in renal medulla

Affiliations
Free article
Review

Molecular mechanisms and therapeutic strategies of chronic renal injury: physiological role of angiotensin II-induced oxidative stress in renal medulla

Takefumi Mori et al. J Pharmacol Sci. 2006 Jan.
Free article

Abstract

Renal medullary circulation has now been found to play a fundamental role in regulating long-term blood pressure control and fluid balance. Elevation of superoxide or reduction of nitric oxide (NO) in renal medulla decreases medullary blood flow and Na excretion, resulting in sustained hypertension. Angiotensin II (Ang II)-induced interaction of superoxide and NO was determined in thin tissue strips isolated from the renal outer medullary region of Sprague-Dawley rats using fluorescent microscopy techniques. Ang II can induce diffusion of NO, but not superoxide, from the medullary thick ascending limb (mTAL) to the surrounded vasa recta. However, when NO is reduced by the NO scavenger carboxy-PTIO, Ang II can induce superoxide diffusion from mTAL to vasa recta pericytes. Therefore, the physiological action of oxidative stress in renal medullary region is demonstrated as balance of superoxide and NO diffusion ("tubulo-vascular cross-talk"). These results explain how chronically hypoxic medulla can maintain blood flow. In other studies using chronically instrumented rats, we found that nearly 70% of Ang II-induced medullary renal injury was dependent on pressure determined by servo-control of renal perfusion pressure, whereas 30% of the injury was non-hemodynamic. We conclude that oxidative stress within the renal medulla can induce hypertension and also make the kidney functionally more vulnerable to the effects of Ang II.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms