Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Jan 30;94(2):179-83.
doi: 10.1038/sj.bjc.6602918.

Epigenetics provides a new generation of oncogenes and tumour-suppressor genes

Affiliations
Review

Epigenetics provides a new generation of oncogenes and tumour-suppressor genes

M Esteller. Br J Cancer. .

Abstract

Cancer is nowadays recognised as a genetic and epigenetic disease. Much effort has been devoted in the last 30 years to the elucidation of the 'classical' oncogenes and tumour-suppressor genes involved in malignant cell transformation. However, since the acceptance that major disruption of DNA methylation, histone modification and chromatin compartments are a common hallmark of human cancer, epigenetics has come to the fore in cancer research. One piece is still missing from the story: are the epigenetic genes themselves driving forces on the road to tumorigenesis? We are in the early stages of finding the answer, and the data are beginning to appear: knockout mice defective in DNA methyltransferases, methyl-CpG-binding proteins and histone methyltransferases strongly affect the risk of cancer onset; somatic mutations, homozygous deletions and methylation-associated silencing of histone acetyltransferases, histone methyltransferases and chromatin remodelling factors are being found in human tumours; and the first cancer-prone families arising from germline mutations in epigenetic genes, such as hSNF5/INI1, have been described. Even more importantly, all these 'new' oncogenes and tumour-suppressor genes provide novel molecular targets for designed therapies, and the first DNA-demethylating agents and inhibitors of histone deacetylases are reaching the bedside of patients with haematological malignancies.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Epigenetic proteins that contribute to human tumorigenesis. Silencing of a classical tumours suppressor gene involves the recruitment of a transcriptional repressor machinery to the corresponding promoter CpG island, such as DNA methyltransferases (DNMT), methyl-CpG-binding proteins (MBD), histone methyltransferases for lysine 9 of histone H3 (HMT K9 H3), histone deacetylases (HDAC) and polycomb (PcGs) complexes. In the other side of the coin, the active expression of oncogenes in human cancer requires a potent transcriptional activation machinery, such as the one constituted by the chromatin-remodelling factors SWI/SNF, histone acetyltransferases (HATs) and histone methyltransferases for lysine 4 of histone H3 (HMT K4 H3).

Republished in

Similar articles

Cited by

References

    1. Bader S, Walker M, McQueen HA, Sellar R, Oei E, Wopereis S, Zhu Y, Peter A, Bird AP, Harrison DJ (2003) MBD1, MBD2 and CGBP genes at chromosome 18q21 are infrequently mutated in human colon and lung cancers. Oncogene 22: 3506–3510 - PubMed
    1. Ballestar E, Paz MF, Valle L, Wei S, Fraga MF, Espada J, Cigudosa JC, Huang TH, Esteller M (2003) Methyl-CpG binding proteins identify novel sites of epigenetic inactivation in human cancer. EMBO J 22: 6335–6345 - PMC - PubMed
    1. Bracken AP, Pasini D, Capra M, Prosperini E, Colli E, Helin K (2003) EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J 22: 5323–5335 - PMC - PubMed
    1. Bradbury CA, Khanim FL, Hayden R, Bunce CM, White DA, Drayson MT, Craddock C, Turner BM (2005) Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors. Leukemia 19: 1751–1759 - PubMed
    1. Eden A, Gaudet F, Waghmare A, Jaenisch R (2003) Chromosomal instability and tumors promoted by DNA hypomethylation. Science 30: 455 - PubMed

LinkOut - more resources