Effect of finite size on cooperativity and rates of protein folding
- PMID: 16405339
- DOI: 10.1021/jp053770b
Effect of finite size on cooperativity and rates of protein folding
Abstract
We analyze the dependence of cooperativity of the thermal denaturation transition and folding rates of globular proteins on the number of amino acid residues, N, using lattice models with side chains, off-lattice Go models, and the available experimental data. A dimensionless measure of cooperativity, Omega(c) (0 < Omega(c) < infinity), scales as Omega(c) approximately N(zeta). The results of simulations and the analysis of experimental data further confirm the earlier prediction that zeta is universal with zeta = 1 + gamma, where exponent gamma characterizes the susceptibility of a self-avoiding walk. This finding suggests that the structural characteristics in the denaturated state are manifested in the folding cooperativity at the transition temperature. The folding rates k(F) for the Go models and a dataset of 69 proteins can be fit using k(F) = k(F)0 exp(-cN(beta)). Both beta = 1/2 and 2/3 provide a good fit of the data. We find that k(F) = k(F)0 exp(-cN(1/2)), with the average (over the dataset of proteins) k(F)0 approximately (0.2 micros)(-1) and c approximately 1.1, can be used to estimate folding rates to within an order of magnitude in most cases. The minimal models give identical N dependence with c approximately 1. The prefactor for off-lattice Go models is nearly 4 orders of magnitude larger than the experimental value.
Similar articles
-
Roles of native topology and chain-length scaling in protein folding: a simulation study with a Go-like model.J Mol Biol. 2001 Oct 12;313(1):171-80. doi: 10.1006/jmbi.2001.5037. J Mol Biol. 2001. PMID: 11601854
-
Finite size effects on thermal denaturation of globular proteins.Phys Rev Lett. 2004 Dec 31;93(26 Pt 1):268107. doi: 10.1103/PhysRevLett.93.268107. Epub 2004 Dec 21. Phys Rev Lett. 2004. PMID: 15698029
-
Protein's native state stability in a chemically induced denaturation mechanism.J Theor Biol. 2007 May 21;246(2):214-24. doi: 10.1016/j.jtbi.2006.12.020. Epub 2006 Dec 27. J Theor Biol. 2007. PMID: 17306831
-
Deciphering the timescales and mechanisms of protein folding using minimal off-lattice models.Curr Opin Struct Biol. 1999 Apr;9(2):197-207. doi: 10.1016/S0959-440X(99)80028-1. Curr Opin Struct Biol. 1999. PMID: 10322218 Review.
-
First passage time analysis of protein folding via nucleation and of barrierless protein denaturation.Adv Colloid Interface Sci. 2009 Feb 28;146(1-2):18-30. doi: 10.1016/j.cis.2008.09.006. Epub 2008 Oct 2. Adv Colloid Interface Sci. 2009. PMID: 19006782 Review.
Cited by
-
Biomolecular dynamics: order-disorder transitions and energy landscapes.Rep Prog Phys. 2012 Jul;75(7):076601. doi: 10.1088/0034-4885/75/7/076601. Epub 2012 Jun 28. Rep Prog Phys. 2012. PMID: 22790780 Free PMC article.
-
Excluded volume, local structural cooperativity, and the polymer physics of protein folding rates.Proc Natl Acad Sci U S A. 2007 Jun 26;104(26):10841-6. doi: 10.1073/pnas.0609321104. Epub 2007 Jun 14. Proc Natl Acad Sci U S A. 2007. PMID: 17569785 Free PMC article.
-
A semi-analytical description of protein folding that incorporates detailed geometrical information.J Chem Phys. 2011 Jun 28;134(24):245101. doi: 10.1063/1.3599473. J Chem Phys. 2011. PMID: 21721664 Free PMC article.
-
Fast Protein Translation Can Promote Co- and Posttranslational Folding of Misfolding-Prone Proteins.Biophys J. 2017 May 9;112(9):1807-1819. doi: 10.1016/j.bpj.2017.04.006. Biophys J. 2017. PMID: 28494952 Free PMC article.
-
The dominant folding route minimizes backbone distortion in SH3.PLoS Comput Biol. 2012;8(11):e1002776. doi: 10.1371/journal.pcbi.1002776. Epub 2012 Nov 15. PLoS Comput Biol. 2012. PMID: 23166485 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources