Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 Jan;19(1):194-202.
doi: 10.1111/j.1420-9101.2005.00974.x.

Can maternally transmitted endosymbionts facilitate the evolution of haplodiploidy?

Affiliations
Free article
Comparative Study

Can maternally transmitted endosymbionts facilitate the evolution of haplodiploidy?

J Engelstädter et al. J Evol Biol. 2006 Jan.
Free article

Abstract

Whilst many invertebrate taxa are haplodiploid, the factors underlying the evolution of haplodiploidy remain unresolved. We investigate theoretically whether haplodiploidy might evolve as an outcome of the co-evolution between maternally inherited endosymbionts and their hosts. First, we substantially extend a recently developed model that involves maternally inherited endosymbionts that kill male offspring by eliminating the paternal genome. We also put forward a new hypothesis and develop a model that involves bacteria that induce cytoplasmic incompatibility (CI). Based on these models, we explore the co-evolutionary events that might occur between hosts and symbionts. We find that both with male-killers and CI-inducing endosymbionts, the hosts are likely to develop increased viability of haploid males, which can be considered a preadaptation to haplodiploidy. In addition, populations with haploidizing male-killers can in some cases evolve directly towards a genetic system of paternal genome elimination, a special form of haplodiploidy. These results are combined with consideration of mechanism and ecology to appraise the likelihood of male-killers and CI inducing bacteria being involved in the evolution of haplodiploidy.

PubMed Disclaimer

Similar articles

Cited by

Publication types