Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Mar 10;356(5):1163-79.
doi: 10.1016/j.jmb.2005.11.080. Epub 2005 Dec 13.

Functional interplay between the jaw domain of bacterial RNA polymerase and allele-specific residues in the product RNA-binding pocket

Affiliations

Functional interplay between the jaw domain of bacterial RNA polymerase and allele-specific residues in the product RNA-binding pocket

Josefine Ederth et al. J Mol Biol. .

Abstract

Bacterial RNA polymerase (RNAP) is a complex molecular machine in which the network of interacting parts and their movements, including contacts to nascent RNA and the DNA template, are at best partially understood. The jaw domain is a part of RNAP that makes a key contact to duplex DNA as it enters the enzyme from downstream and also contacts two other parts of RNAP, the trigger loop, which lies in the RNAP secondary channel, and a sequence insertion in the Escherichia coli RNAP trigger loop that forms an external domain and also contacts downstream DNA. Deletion of the jaw domain causes defects in transcriptional pausing and in bacterial growth. We report here that these defects can be partially corrected by a limited set of substitutions in a distant part of RNAP, the product RNA-binding pocket. The product RNA-binding pocket binds nascent RNA upstream of the active site and is the binding site for the RNAP inhibitor rifampicin when RNA is absent. These substitutions have little effect on transcript elongation between pause sites and actually exacerbate jaw-deletion defects in transcription initiation, suggesting that the pausing defects may be principally responsible for the in vivo phenotype of the jaw deletion. We suggest that the counteracting effects on pausing of the alterations in the jaw and the product RNA binding site may be mediated either by effects on translocation or via allosteric communication to the RNAP active site.

PubMed Disclaimer

Publication types

LinkOut - more resources