Transmembrane protein structures without X-rays
- PMID: 16406532
- DOI: 10.1016/j.tibs.2005.12.005
Transmembrane protein structures without X-rays
Abstract
Transmembrane (TM) proteins constitute 15-30% of the genome, but <1% of the structures in the Protein Data Bank. This discrepancy is disturbing, and emphasizes that structure determination of TM proteins remains challenging. The challenge is greatest for proteins from eukaryotes, the structures of which remain intractable despite tremendous advances that have been made towards structure determination of bacterial TM proteins. Notably, >50% of the membrane protein families in eukaryotes lack bacterial homologs. Therefore, it is conceivable that many more years will elapse before high-resolution structures of eukaryotic TM proteins emerge. Until then, integrated approaches that combine biochemical and computational analyses with low-resolution structures are likely to have increasingly important roles in providing frameworks for the mechanistic understanding of membrane-protein structure and function.
Similar articles
-
Assigning transmembrane segments to helices in intermediate-resolution structures.Bioinformatics. 2004 Aug 4;20 Suppl 1:i122-9. doi: 10.1093/bioinformatics/bth939. Bioinformatics. 2004. PMID: 15262790
-
Progress in structure prediction of alpha-helical membrane proteins.Curr Opin Struct Biol. 2006 Aug;16(4):496-504. doi: 10.1016/j.sbi.2006.06.003. Epub 2006 Jul 5. Curr Opin Struct Biol. 2006. PMID: 16822664 Review.
-
Determining membrane protein structures: still a challenge!Trends Biochem Sci. 2007 Jun;32(6):259-70. doi: 10.1016/j.tibs.2007.04.001. Epub 2007 May 3. Trends Biochem Sci. 2007. PMID: 17481903 Review.
-
How strongly do sequence conservation patterns and empirical scales correlate with exposure patterns of transmembrane helices of membrane proteins?Biopolymers. 2006 Nov;83(4):389-99. doi: 10.1002/bip.20569. Biopolymers. 2006. PMID: 16838301
-
Modeling membrane proteins based on low-resolution electron microscopy maps: a template for the TM domains of the oxalate transporter OxlT.Protein Eng Des Sel. 2005 Mar;18(3):119-25. doi: 10.1093/protein/gzi013. Epub 2005 Apr 8. Protein Eng Des Sel. 2005. PMID: 15820982
Cited by
-
Interplay between hydrophobicity and the positive-inside rule in determining membrane-protein topology.Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):10340-5. doi: 10.1073/pnas.1605888113. Epub 2016 Aug 25. Proc Natl Acad Sci U S A. 2016. PMID: 27562165 Free PMC article.
-
Enhanced Inter-helical Residue Contact Prediction in Transmembrane Proteins.Chem Eng Sci. 2011 Oct 1;66(19):4356-4369. doi: 10.1016/j.ces.2011.04.033. Chem Eng Sci. 2011. PMID: 21892227 Free PMC article.
-
Characterizing and predicting the functional and conformational diversity of seven-transmembrane proteins.Methods. 2011 Dec;55(4):405-14. doi: 10.1016/j.ymeth.2011.12.005. Epub 2011 Dec 17. Methods. 2011. PMID: 22197575 Free PMC article.
-
Homology modeling, molecular dynamic simulation, and docking based binding site analysis of human dopamine (D4) receptor.J Mol Model. 2015 Feb;21(2):36. doi: 10.1007/s00894-015-2579-3. Epub 2015 Feb 4. J Mol Model. 2015. PMID: 25650117
-
Identification of key residues determining species differences in inhibitor binding of microsomal prostaglandin E synthase-1.J Biol Chem. 2010 Sep 17;285(38):29254-61. doi: 10.1074/jbc.M110.114454. Epub 2010 Jul 6. J Biol Chem. 2010. PMID: 20605783 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources