Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Aug;1(3):146-8.
doi: 10.1038/nchembio718. Epub 2005 Jul 3.

High-throughput assays for promiscuous inhibitors

Affiliations

High-throughput assays for promiscuous inhibitors

Brian Y Feng et al. Nat Chem Biol. 2005 Aug.

Abstract

High-throughput screening (HTS) searches large libraries of chemical compounds for those that can modulate the activity of a particular biological target; it is the dominant technique used in early-stage drug discovery. A key problem in HTS is the prevalence of nonspecific or 'promiscuous' inhibitors. These molecules have peculiar properties, act on unrelated targets and can dominate the results from screening campaigns. Several explanations have been proposed to account for promiscuous inhibitors, including chemical reactivity, interference in assay read-out, high molecular flexibility and hydrophobicity. The diversity of these models reflects the apparently unrelated molecules whose behaviors they seek to explain. However, a single mechanism may explain the effects of many promiscuous inhibitors: some organic molecules form large colloid-like aggregates that sequester and thereby inhibit enzymes. Hits from HTS, leads for drug discovery and even several drugs appear to act through this mechanism at micromolar concentrations. Here, we report two rapid assays for detecting promiscuous aggregates that we tested against 1,030 'drug-like' molecules. The results from these assays were used to test two preliminary computational models of this phenomenon and as benchmarks to develop new models.

PubMed Disclaimer

Comment in

Publication types