Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1992;47(2):341-9.
doi: 10.1016/0306-4522(92)90250-6.

Muscarinic antagonists attenuate neurotensin-stimulated accumbens and striatal dopamine metabolism

Affiliations

Muscarinic antagonists attenuate neurotensin-stimulated accumbens and striatal dopamine metabolism

R Rivest et al. Neuroscience. 1992.

Abstract

The effect of scopolamine and atropine upon the increase in extracellular 3,4-dihydroxyphenylacetic acid induced by central injection of neurotensin was examined in the nucleus accumbens and the striatum of anaesthetized rats using in vivo differential pulse voltammetry with carbon fibre electrodes. Scopolamine (1 and 3 mg/kg, i.p.) and atropine (20 micrograms, i.c.v.) did not alter the 3,4-dihydroxyphenylacetic acid level in the nucleus accumbens or the striatum, measured for 60 min after administration. Neurotensin (10 micrograms, i.c.v.) increased the 3,4-dihydroxyphenylacetic acid peak height in both regions. Pretreatment with scopolamine (1 mg/kg) 15 min before neurotensin injection blocked the increase in extracellular 3,4-dihydroxyphenylacetic acid in the striatum but not in the nucleus accumbens whilst scopolamine (3 mg/kg) partially attenuated the effect of neurotensin in the nucleus accumbens and blocked the increase in 3,4-dihydroxyphenylacetic acid in the striatum. Atropine partially attenuated the effect produced by neurotensin in the nucleus accumbens and blocked the increase in 3,4-dihydroxyphenylacetic acid induced by the peptide in the striatum. However, the increase in extracellular 3,4-dihydroxyphenylacetic acid induced by haloperidol (1 mg/kg, s.c.) was not altered by scopolamine (1 mg/kg) or atropine. Also, the increase in dopamine metabolism in the nucleus accumbens and the striatum after centrally injected haloperidol (10 micrograms, i.c.v.) was not altered by atropine (20 micrograms, i.c.v.). Together, the results demonstrate a functional interaction between muscarinic antagonists and neurotensin on in vivo dopamine metabolism in the nucleus accumbens and the striatum but with a greater effect in the latter region.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources