Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Feb;27(2):78-84.
doi: 10.1016/j.tips.2005.12.008. Epub 2006 Jan 18.

The role of the endoplasmic reticulum Ca2+ store in the plasticity of central neurons

Affiliations
Review

The role of the endoplasmic reticulum Ca2+ store in the plasticity of central neurons

Scott Bardo et al. Trends Pharmacol Sci. 2006 Feb.

Abstract

The smooth endoplasmic reticulum (SER) is a well-characterized buffer and source of Ca2+ in both axonal and dendritic compartments of neurons. Ca2+ release from the SER can be evoked by stimulation of the ryanodine receptor or the inositol (1,4,5)-trisphosphate [Ins(1,4,5)P3] receptor. Both receptors can couple to the activation of neurotransmitter-gated receptors and voltage-gated Ca2+ channels on the plasma membrane, thus enabling the SER to discriminate between different types of neuronal activity. In axonal terminals, Ca2+-induced Ca2+ release (CICR) mediates spontaneous, evoked and facilitated neurotransmission. Store release might also regulate the mobilization and recycling of synaptic vesicles. In the dendritic compartment, the distribution of Ins(1,4,5)P3 receptors and ryanodine receptors influences the intracellular encoding of neuronal activity. Thus, the functionality of the Ca2+ store can affect both the polarity and the spatial extent of Ca2+-dependent shifts in synaptic efficacy. In hippocampal neurons, for example, CICR in the spine heads underlies homosynaptic plasticity, whereas heterosynaptic plasticity is mediated by Ins(1,4,5)P3-dependent Ca2+ signalling. Purkinje neurons primarily express Ins(1,4,5)P3 receptors in the spine heads, and long-term depression of synaptic efficacy is crucially dependent on Ins(1,4,5)P3.

PubMed Disclaimer

MeSH terms

LinkOut - more resources