High-resolution molecular and antigen structure of the VP8* core of a sialic acid-independent human rotavirus strain
- PMID: 16415027
- PMCID: PMC1346936
- DOI: 10.1128/JVI.80.3.1513-1523.2006
High-resolution molecular and antigen structure of the VP8* core of a sialic acid-independent human rotavirus strain
Abstract
The most intensively studied rotavirus strains initially attach to cells when the "heads" of their protruding spikes bind cell surface sialic acid. Rotavirus strains that cause disease in humans do not bind this ligand. The structure of the sialic acid binding head (the VP8* core) from the simian rotavirus strain RRV has been reported, and neutralization epitopes have been mapped onto its surface. We report here a 1.6-A resolution crystal structure of the equivalent domain from the sialic acid-independent rotavirus strain DS-1, which causes gastroenteritis in humans. Although the RRV and DS-1 VP8* cores differ functionally, they share the same galectin-like fold. Differences between the RRV and DS-1 VP8* cores in the region that corresponds to the RRV sialic acid binding site make it unlikely that DS-1 VP8* binds an alternative carbohydrate ligand in this location. In the crystals, a surface cleft on each DS-1 VP8* core binds N-terminal residues from a neighboring molecule. This cleft may function as a ligand binding site during rotavirus replication. We also report an escape mutant analysis, which allows the mapping of heterotypic neutralizing epitopes recognized by human monoclonal antibodies onto the surface of the VP8* core. The distribution of escape mutations on the DS-1 VP8* core indicates that neutralizing antibodies that recognize VP8* of human rotavirus strains may bind a conformation of the spike that differs from those observed to date.
Figures





Similar articles
-
The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site.EMBO J. 2002 Mar 1;21(5):885-97. doi: 10.1093/emboj/21.5.885. EMBO J. 2002. PMID: 11867517 Free PMC article.
-
Effects on sialic acid recognition of amino acid mutations in the carbohydrate-binding cleft of the rotavirus spike protein.Glycobiology. 2009 Mar;19(3):194-200. doi: 10.1093/glycob/cwn119. Epub 2008 Oct 30. Glycobiology. 2009. PMID: 18974199
-
Rotavirus VP8*: phylogeny, host range, and interaction with histo-blood group antigens.J Virol. 2012 Sep;86(18):9899-910. doi: 10.1128/JVI.00979-12. Epub 2012 Jul 3. J Virol. 2012. PMID: 22761376 Free PMC article.
-
Genetic diversity of G1P[8] rotavirus VP7 and VP8* antigens in Finland over a 20-year period: No evidence for selection pressure by universal mass vaccination with RotaTeq® vaccine.Infect Genet Evol. 2013 Oct;19:51-8. doi: 10.1016/j.meegid.2013.06.026. Epub 2013 Jul 4. Infect Genet Evol. 2013. PMID: 23831933 Review.
-
Nonstructural proteins involved in genome packaging and replication of rotaviruses and other members of the Reoviridae.Virus Res. 2004 Apr;101(1):57-66. doi: 10.1016/j.virusres.2003.12.006. Virus Res. 2004. PMID: 15010217 Review.
Cited by
-
Functional and Structural Characterization of P[19] Rotavirus VP8* Interaction with Histo-blood Group Antigens.J Virol. 2016 Oct 14;90(21):9758-9765. doi: 10.1128/JVI.01566-16. Print 2016 Nov 1. J Virol. 2016. PMID: 27535055 Free PMC article.
-
Simian rotaviruses possess divergent gene constellations that originated from interspecies transmission and reassortment.J Virol. 2010 Feb;84(4):2013-26. doi: 10.1128/JVI.02081-09. Epub 2009 Nov 25. J Virol. 2010. PMID: 19939934 Free PMC article.
-
Diversity in Rotavirus-Host Glycan Interactions: A "Sweet" Spectrum.Cell Mol Gastroenterol Hepatol. 2016 Mar 12;2(3):263-273. doi: 10.1016/j.jcmgh.2016.03.002. eCollection 2016 May. Cell Mol Gastroenterol Hepatol. 2016. PMID: 28090561 Free PMC article. Review.
-
Resurgence of Rotavirus Genotype G12 in St. Louis During the 2014-2015 Rotavirus Season.J Pediatric Infect Dis Soc. 2017 Nov 24;6(4):346-351. doi: 10.1093/jpids/piw065. J Pediatric Infect Dis Soc. 2017. PMID: 27988496 Free PMC article.
-
Comparative genomic analysis of genogroup 1 (Wa-like) rotaviruses circulating in the USA, 2006-2009.Infect Genet Evol. 2014 Dec;28:513-23. doi: 10.1016/j.meegid.2014.09.021. Epub 2014 Oct 6. Infect Genet Evol. 2014. PMID: 25301114 Free PMC article.
References
-
- Bartels, C., T.-H. Xia, M. Billeter, P. Guntert, and K. Wuthrich. 1995. The program XEASY for computer-supported NMR spectral analysis of biological macromolecules. J. Biomol. NMR 5:1-10. - PubMed
-
- Brunger, A. T., P. D. Adams, G. M. Clore, W. L. DeLano, P. Gros, R. W. Grosse-Kunstleve, J. S. Jiang, J. Kuszewski, M. Nilges, N. S. Pannu, R. J. Read, L. M. Rice, T. Simonson, and G. L. Warren. 1998. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54:905-921. - PubMed
-
- Ciarlet, M., and M. K. Estes. 1999. Human and most animal rotavirus strains do not require the presence of sialic acid on the cell surface for efficient infectivity. J. Gen. Virol. 80:943-948. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
Grants and funding
LinkOut - more resources
Full Text Sources