Conditions for propagation and block of excitation in an asymptotic model of atrial tissue
- PMID: 16415048
- PMCID: PMC1403186
- DOI: 10.1529/biophysj.105.072637
Conditions for propagation and block of excitation in an asymptotic model of atrial tissue
Abstract
Detailed ionic models of cardiac cells are difficult for numerical simulations because they consist of a large number of equations and contain small parameters. The presence of small parameters, however, may be used for asymptotic reduction of the models. Earlier results have shown that the asymptotics of cardiac equations are nonstandard. Here we apply such a novel asymptotic method to an ionic model of human atrial tissue to obtain a reduced but accurate model for the description of excitation fronts. Numerical simulations of spiral waves in atrial tissue show that wave fronts of propagating action potentials break up and self-terminate. Our model, in particular, yields a simple analytical criterion of propagation block, which is similar in purpose but completely different in nature to the "Maxwell rule" in the FitzHugh-Nagumo type models. Our new criterion agrees with direct numerical simulations of breakup of reentrant waves.
Figures










Similar articles
-
New mechanism of spiral wave initiation in a reaction-diffusion-mechanics system.PLoS One. 2011;6(11):e27264. doi: 10.1371/journal.pone.0027264. Epub 2011 Nov 14. PLoS One. 2011. PMID: 22114667 Free PMC article.
-
Anatomical and spiral wave reentry in a simplified model for atrial electrophysiology.J Theor Biol. 2017 Apr 21;419:100-107. doi: 10.1016/j.jtbi.2017.02.008. Epub 2017 Feb 10. J Theor Biol. 2017. PMID: 28192083
-
Action potential propagation and block in a model of atrial tissue with myocyte-fibroblast coupling.Math Med Biol. 2021 Mar 15;38(1):106-131. doi: 10.1093/imammb/dqaa014. Math Med Biol. 2021. PMID: 33412587
-
Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias.Prog Biophys Mol Biol. 2004 Jun-Jul;85(2-3):501-22. doi: 10.1016/j.pbiomolbio.2004.01.016. Prog Biophys Mol Biol. 2004. PMID: 15142759
-
Multi-scale approaches for the simulation of cardiac electrophysiology: II - Tissue-level structure and function.Methods. 2021 Jan;185:60-81. doi: 10.1016/j.ymeth.2020.01.010. Epub 2020 Jan 25. Methods. 2021. PMID: 31988002 Review.
Cited by
-
Reconstructing cardiac electrical excitations from optical mapping recordings.Chaos. 2023 Sep 1;33(9):093141. doi: 10.1063/5.0156314. Chaos. 2023. PMID: 37756611 Free PMC article.
-
Mechanisms of transition from normal to reentrant electrical activity in a model of rabbit atrial tissue: interaction of tissue heterogeneity and anisotropy.Biophys J. 2009 Feb;96(3):798-817. doi: 10.1016/j.bpj.2008.09.057. Biophys J. 2009. PMID: 19186122 Free PMC article.
-
Recent developments in using mechanistic cardiac modelling for drug safety evaluation.Drug Discov Today. 2016 Jun;21(6):924-38. doi: 10.1016/j.drudis.2016.02.003. Epub 2016 Feb 15. Drug Discov Today. 2016. PMID: 26891981 Free PMC article. Review.
-
How the Hodgkin-Huxley equations inspired the Cardiac Physiome Project.J Physiol. 2012 Jun 1;590(11):2613-28. doi: 10.1113/jphysiol.2011.224238. Epub 2012 Apr 2. J Physiol. 2012. PMID: 22473779 Free PMC article.
References
-
- Krinsky, V. I. 1966. Spread of excitation in an inhomogeneous medium (state similar to cardiac fibrillation). Biofizika. 11:776–784.
-
- Moe, G. K. 1962. On the multiple wavelet hypothesis of atrial fibrillation. Arch. Int. Pharmacodyn. Ther. 140:183–188.
-
- Weiss, J. N., P. S. Chen, Z. Qu, H. S. Karagueuzian, and A. Garfinkel. 2000. Ventricular fibrillation: How do we stop the waves from breaking? Circ. Res. 87:1103–1107. - PubMed
-
- Panfilov, A., and A. Pertsov. 2001. Ventricular fibrillation: evolution of the multiple-wavelet hypothesis. Philos. Trans. R. Soc. Lond. A. 359:1315–1325.
-
- Kléber, A. G., and Y. Rudy. 2004. Basic mechanisms of cardiac impulse propagation and associated arrhythmias. Physiol. Rev. 84:431–488. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources