Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005:57 Suppl:191-5.

Purinoceptors in renal microvessels: adenosine-activated and cytochrome P450 monooxygenase-derived arachidonate metabolites

Affiliations
  • PMID: 16415499
Review

Purinoceptors in renal microvessels: adenosine-activated and cytochrome P450 monooxygenase-derived arachidonate metabolites

Mairead A Carroll et al. Pharmacol Rep. 2005.

Abstract

Cytochrome P450 (CYP)-dependent epoxyeicosatrienoic acids (EETs) dilate rat preglomerular microvessels (PGMVs) when adenosine 2A receptors (A(2A)R) are stimulated. As high salt intake increases epoxygenase activity and adenosine levels, we hypothesized that renal adenosine responses would be greater in high salt-fed rats. We have obtained evidence supporting this hypothesis in rats fed a high salt diet for 7 days. Stimulation of adenosine receptors with 2-chloroadenosine in kidneys obtained from rats on high salt (4%) intake produced an increase in EET release that was several-fold greater than in kidneys of rats on normal salt (0.4% NaCl) diets, which was associated with a sharp decline in renovascular resistance. Under conditions of high salt intake, an associated upregulation of A(2A)R and 2C23 protein expression was observed. As EETs are renal vasodilator and natriuretic eicosanoids, the antipressor response to salt loading may operate through an A(2A)R - EET mechanism. These findings expand the role of adenosine-related mechanisms in protecting renal function.

PubMed Disclaimer

Publication types

LinkOut - more resources