Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Feb;38(2):168-74.
doi: 10.1038/ng1717. Epub 2006 Jan 15.

Evolution of new protein topologies through multistep gene rearrangements

Affiliations

Evolution of new protein topologies through multistep gene rearrangements

Sergio G Peisajovich et al. Nat Genet. 2006 Feb.

Abstract

New protein folds have emerged throughout evolution, but it remains unclear how a protein fold can evolve while maintaining its function, particularly when fold changes require several sequential gene rearrangements. Here, we explored hypothetical evolutionary pathways linking different topological families of the DNA-methyltransferase superfamily. These pathways entail successive gene rearrangements through a series of intermediates, all of which should be sufficiently active to maintain the organism's fitness. By means of directed evolution, and starting from HaeIII methyltransferase (M.HaeIII), we selected all the required intermediates along these paths (a duplicated fused gene and duplicates partially truncated at their 5' or 3' coding regions) that maintained function in vivo. These intermediates led to new functional genes that resembled natural methyltransferases from three known classes or that belonged to a new class first seen in our evolution experiments and subsequently identified in natural genomes. Our findings show that new protein topologies can evolve gradually through multistep gene rearrangements and provide new insights regarding these processes.

PubMed Disclaimer

Publication types

Associated data