Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Feb;55(2):335-42.
doi: 10.1002/mrm.20769.

Influence of SENSE on image properties in high-resolution single-shot echo-planar DTI

Affiliations
Free article

Influence of SENSE on image properties in high-resolution single-shot echo-planar DTI

T Jaermann et al. Magn Reson Med. 2006 Feb.
Free article

Abstract

Limited spatial resolution is a key obstacle to the study of brain white matter structure with diffusion tensor imaging (DTI). In its frequent implementation with single-excitation spin-echo echo-planar sequences, DTI's ability to resolve small structures is strongly restricted by T2 and T2* decay, B0 inhomogeneity, and limited signal-to-noise ratio (SNR). In this work the influence of sensitivity encoding (SENSE) on diffusion-weighted (DW) image properties is investigated. Computer simulations showed that the PSF becomes narrower with increasing SENSE reduction factors, R, enhancing the intrinsic resolution. After a brief theoretical discussion, we describe the estimation of SNR on a pixel-by-pixel basis as a function of R. The mean image SNR behavior is manifold: SENSE is capable of increasing SNR efficiency by reducing the echo time (TE). Each SNR(R) curve reveals a maximum that depends on the amount of partial Fourier encoding used. The overall best SNR efficiency for an eight-element head coil array and a b-factor of 1000 s/mm2 is achieved at R = 2.1 and partial Fourier encoding of 60%. In vivo tensor maps of volunteers and a patient, with an in-plane resolution of 0.78 x 0.78 mm2, are also presented to demonstrate the practical implementation of the parallel approach.

PubMed Disclaimer

Publication types

LinkOut - more resources