Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 Apr;59(5):290-8.
doi: 10.1002/syn.20241.

Effects of COX-1 and COX-2 inhibitors on the firing of rat midbrain dopaminergic neurons--possible involvement of endogenous kynurenic acid

Affiliations
Comparative Study

Effects of COX-1 and COX-2 inhibitors on the firing of rat midbrain dopaminergic neurons--possible involvement of endogenous kynurenic acid

Lilly Schwieler et al. Synapse. 2006 Apr.

Abstract

Kynurenic acid (KYNA) is an endogenous glutamate-receptor antagonist with a preferential action at the glycine-site of the NMDA-receptor. In the present in vivo study, the importance of brain KYNA to modulate the activity of dopamine (DA) neurons in the ventral tegmental area (VTA) was analyzed by utilizing the decrease in brain KYNA formation induced by the cyclooxygenase (COX)-2 inhibitor parecoxib. A reduction in brain KYNA concentration (39-44%) by parecoxib (25 mg/kg, i.v., 1 h or, i.p., 3.5 h) was associated with a decreased firing rate and burst firing activity. In concordance, an increase in brain KYNA concentration (150-300%), induced by the COX-1 inhibitor indomethacin (50 mg/kg, i.v., 1 h or, i.p., 3.5 h), produced opposite effects, that is, increased firing rate and burst firing activity. The decrease and increase in neuronal firing of VTA DA neurons by the COX-inhibitors was reversed by L-701,324 (antagonist at the NMDA-glycine site; 0.06-2 mg/kg, i.v.) and by D-cycloserine (partial agonist at the NMDA-glycine site; 2-32 mg/kg, i.v.), respectively. In addition, the parecoxib-induced decrease in firing rate and burst firing activity was effectively blocked by pretreatment with kynurenine (5 mg/kg, i.p., 30 min), the immediate precursor of KYNA. Present results suggest that the action of COX-inhibitors on the firing of VTA DA neurons are linked to their effects on KYNA formation and that endogenous KYNA is tonically modulating the neuronal activity of VTA DA neurons. Such a modulatory action of KYNA should be of importance for the functioning of mesocorticolimbic DA pathway.

PubMed Disclaimer

Publication types

LinkOut - more resources