Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jan;126(1):205-11.
doi: 10.1038/sj.jid.5700014.

Importance of the EP(1) receptor in cutaneous UVB-induced inflammation and tumor development

Affiliations
Free article

Importance of the EP(1) receptor in cutaneous UVB-induced inflammation and tumor development

Kathleen L Tober et al. J Invest Dermatol. 2006 Jan.
Free article

Abstract

Chronic exposure to UV light, the primary cause of skin cancer, results in the induction of high levels of cyclooxygenase-2 (COX-2) expression in the skin. The involvement of COX-2 in the carcinogenesis process is mediated by its enzymatic product, prostaglandin E(2) (PGE(2)). PGE(2) has been shown to have a variety of activities that can contribute to tumor development and growth. The effects of PGE(2) on different cell types are mediated by four E prostanoid (EP) receptors, EP(1)-EP(4). While recent studies have demonstrated the importance of EP(1) in the development of colon and breast cancer, the extent of EP(1) involvement in the cutaneous photocarcinogenesis process is unknown. This study found that topical treatment with celecoxib or the specific EP(1) antagonist ONO-8713 decreased acute UVB-induced inflammation in the skin and significantly reduced the number of tumors per mouse following 25 weeks of UVB exposure and topical treatment. This study suggests that drugs designed to block EP(1) may have the potential to be used as anti-inflammatory and/or chemopreventive agents that reduce the risk of skin cancer development.

PubMed Disclaimer

Publication types

MeSH terms