Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006;8(1):R3.
doi: 10.1186/bcr1365. Epub 2005 Dec 12.

BRCA1 and BRCA2 mutation predictions using the BOADICEA and BRCAPRO models and penetrance estimation in high-risk French-Canadian families

Affiliations

BRCA1 and BRCA2 mutation predictions using the BOADICEA and BRCAPRO models and penetrance estimation in high-risk French-Canadian families

Antonis C Antoniou et al. Breast Cancer Res. 2006.

Abstract

Introduction: Several genetic risk models for breast and ovarian cancer have been developed, but their applicability to specific populations has not been evaluated. We used data from French-Canadian families to evaluate the mutation predictions given by the BRCAPRO and BOADICEA models. We also used this data set to estimate the age-specific risks for breast and ovarian cancer in BRCA1 and BRCA2 mutation carriers.

Methods: A total of 195 families with multiple affected individuals with breast or ovarian cancer were recruited through the INHERIT (INterdisciplinary HEalth Research International Team on BReast CAncer susceptibility) BRCAs research program. Observed BRCA1 and BRCA2 mutation status was compared with predicted carrier probabilities under the BOADICEA and BRCAPRO models. The models were assessed using Brier scores, attributes diagrams and receiver operating characteristic curves. Log relative risks for breast and ovarian cancer in mutation carriers versus population risks were estimated by maximum likelihood, using a modified segregation analysis implemented in the computer program MENDEL. Twenty-five families were eligible for inclusion in the BRCA1 penetrance analysis and 27 families were eligible for the BRCA2 penetrance analysis.

Results: The BOADICEA model predicted accurately the number of BRCA1 and BRCA2 mutations for the various groups of families, and was found to discriminate well at the individual level between carriers and noncarriers. BRCAPRO over-predicted the number of mutations in almost all groups of families, in particular the number of BRCA1 mutations. It significantly overestimated the carrier frequency for high predicted probabilities. However, it discriminated well between carriers and noncarriers. Receiver operating characteristic (ROC) curves indicate similar sensitivity and specificity for BRCAPRO and BOADICEA. The estimated risks for breast and ovarian cancer in BRCA1 and BRCA2 mutation carriers were consistent with previously published estimates.

Conclusion: The BOADICEA model predicts accurately the carrier probabilities in French-Canadian families and may be used for counselling in this population. None of the penetrance estimates was significantly different from previous estimates, suggesting that previous estimates may be appropriate for counselling in this population.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Attributes diagram. Shown is an attributes diagram comparing the predicted carrier probabilities and the observed carrier frequencies for BRCA1 and BRCA2 mutations combined. BOADICEA predictions were carried out using data from all reported family members and restricted to second-degree relatives only. BRCAPRO predictions were adjusted for an 80% sensitivity for the mutation screening methods used. Each point represents a sextile of the data and 95% confidence intervals were computed assuming a binomial distribution.
Figure 2
Figure 2
ROC curves. Shown are ROC curves for the BOADICEA and BRCAPRO predictions of carrying either a BRCA1 or a BRCA2 mutation. BOADICEA predictions assumed all reported family members. ROC, receiver operating characteristic.

References

    1. Antoniou A, Pharoah PD, Narod S, Risch HA, Eyfjord JE, Hopper JL, Loman N, Olsson H, Johannsson O, Borg A, et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet. 2003;72:1117–1130. doi: 10.1086/375033. - DOI - PMC - PubMed
    1. Easton DF, Ford D, Bishop DT. Breast and ovarian cancer incidence in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. Am J Hum Genet. 1995;56:265–271. - PMC - PubMed
    1. Ford D, Easton DF, Stratton M, Narod S, Goldgar D, Devilee P, Bishop DT, Weber B, Lenoir G, Chang-Claude J, et al. Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium. Am J Hum Genet. 1998;62:676–689. doi: 10.1086/301749. - DOI - PMC - PubMed
    1. Hopper JL, Southey MC, Dite GS, Jolley DJ, Giles GG, McCredie MR, Easton DF, Venter DJ. Population-based estimate of the average age-specific cumulative risk of breast cancer for a defined set of protein-truncating mutations in BRCA1 and BRCA2. Australian Breast Cancer Family Study. Cancer Epidemiol Biomarkers Prev. 1999;8:741–747. - PubMed
    1. King MC, Marks JH, Mandell JB. Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science. 2003;302:643–646. doi: 10.1126/science.1088759. - DOI - PubMed

Publication types

MeSH terms