Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Jun;45(6):703-10.
doi: 10.1093/rheumatology/kei282. Epub 2006 Jan 17.

Chloroquine inhibits production of TNF-alpha, IL-1beta and IL-6 from lipopolysaccharide-stimulated human monocytes/macrophages by different modes

Affiliations

Chloroquine inhibits production of TNF-alpha, IL-1beta and IL-6 from lipopolysaccharide-stimulated human monocytes/macrophages by different modes

C-H Jang et al. Rheumatology (Oxford). 2006 Jun.

Abstract

Objectives: TNF-alpha, IL-1 and IL-6 are known to have primary roles in the pathogenesis of rheumatoid arthritis and other inflammatory diseases. The anti-rheumatic drug chloroquine has been shown to inhibit TNF-alpha, IL-1 and IL-6 production from mononuclear phagocytes. We examined the underlying mechanisms involved in the chloroquine-induced inhibition of cytokine production.

Methods: Human peripheral blood mononuclear cells and monocytes/macrophages and monocytic U-937 and THP-1 cells were stimulated with lipopolysaccharide, and TNF-alpha, IL-1beta and IL-6 production was measured by ELISA. Levels of mRNA were measured by northern blotting and reverse transcription-polymerase chain reaction. Synthesis of 26-kDa TNF-alpha precursor was measured by metabolic labelling and immunoprecipitation analysis. Transcription rate was determined by nuclear run-on assay.

Results: TNF-alpha release from the cells was inhibited by chloroquine, whereas the steady-state level of TNF-alpha mRNA and synthesis of 26-kDa TNF-alpha precursor were not changed by chloroquine. In contrast, chloroquine-induced inhibition of IL-1beta and IL-6 release was accompanied by a decrease in their steady-state mRNA levels. The transcription rates of the IL-1beta and IL-6 genes were not changed by chloroquine, whereas the stability of IL-1beta and IL-6 mRNA was decreased by chloroquine. Weak-base amines such as methylamine and ammonium chloride had no effect on the production of TNF-alpha, whereas they partially blocked the production of IL-1beta and IL-6.

Conclusions: Our results indicate that chloroquine-mediated inhibition of TNF-alpha, IL-1beta and IL-6 synthesis occurs through different modes in lipopolysaccharide-stimulated human monocytes/macrophages: it blocks the conversion of cell-associated TNF-alpha precursor to mature soluble protein, whereas it reduces the levels of IL-1beta and IL-6 mRNA, at least in part, by decreasing their stability and by a pH-dependent mechanism.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources