Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Mar 20;12(10):2739-44.
doi: 10.1002/chem.200501034.

The interaction of heteroaryl-acrylates and alanines with phenylalanine ammonia-lyase from parsley

Affiliations

The interaction of heteroaryl-acrylates and alanines with phenylalanine ammonia-lyase from parsley

Csaba Paizs et al. Chemistry. .

Abstract

Acrylic acids and alanines substituted with heteroaryl groups at the beta-position were synthesized and spectroscopically characterized (UV, HRMS, (1)H NMR, and (13)C NMR spectroscopy). The heteroaryl groups were furanyl, thiophenyl, benzofuranyl, and benzothiophenyl and contained the alanyl side chains either at the 2- or 3-positions. While the former are good substrates for phenylalanine ammonia-lyase (PAL), the latter compounds are inhibitors. Exceptions are thiophen-3-yl-alanine, a moderate substrate and furan-3-yl-alanine, which is inert. Possible reasons for these exceptions are discussed. Starting from racemic heteroaryl-2-alanines their D-enantiomers were prepared by using a stereodestructive procedure. From the heteroaryl-2-acrylates, the L-enantiomers of the heteroaryl-2-alanines were prepared at high ammonia concentration. These results can be best explained by a Friedel-Crafts-type electrophilic attack at the aromatic part of the substrates as the initial step of the PAL reaction.

PubMed Disclaimer

Publication types

LinkOut - more resources