Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 Mar;17(3):617-26.
doi: 10.1681/ASN.2005070732. Epub 2006 Jan 18.

Acid-base status determines the renal expression of Ca2+ and Mg2+ transport proteins

Affiliations
Free article
Comparative Study

Acid-base status determines the renal expression of Ca2+ and Mg2+ transport proteins

Tom Nijenhuis et al. J Am Soc Nephrol. 2006 Mar.
Free article

Abstract

Chronic metabolic acidosis results in renal Ca2+ and Mg2+ wasting, whereas chronic metabolic alkalosis is known to exert the reverse effects. It was hypothesized that these adaptations are mediated at least in part by the renal Ca2+ and Mg2+ transport proteins. The aim of this study, therefore, was to determine the effect of systemic acid-base status on renal expression of the epithelial Ca2+ channel TRPV5, the Ca2+-binding protein calbindin-D28K, and the epithelial Mg2+ channel TRPM6 in relation to Ca2+ and Mg2+ excretion. Chronic metabolic acidosis that was induced by NH4Cl loading or administration of the carbonic anhydrase inhibitor acetazolamide for 6 d enhanced calciuresis accompanied by decreased renal TRPV5 and calbindin-D28K mRNA and protein abundance in wild-type mice. In contrast, metabolic acidosis did not affect Ca2+ excretion in TRPV5 knockout (TRPV5-/-) mice, in which active Ca2+ reabsorption is effectively abolished. This demonstrates that downregulation of renal Ca2+ transport proteins is responsible for the hypercalciuria. Conversely, chronic metabolic alkalosis that was induced by NaHCO3 administration for 6 d increased the expression of Ca2+ transport proteins accompanied by diminished urine Ca2+ excretion in wild-type mice. However, this Ca2+-sparing action persisted in TRPV5-/- mice, suggesting that additional mechanisms apart from upregulation of active Ca2+ transport contribute to the hypocalciuria. Furthermore, chronic metabolic acidosis decreased renal TRPM6 expression, increased Mg2+ excretion, and decreased serum Mg2+ concentration, whereas chronic metabolic alkalosis resulted in the exact opposite effects. In conclusion, these data suggest that regulation of Ca2+ and Mg2+ transport proteins contributes importantly to the effects of acid-base status on renal divalent handling.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources