Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2005 Dec;8(4):209-19.
doi: 10.1080/10253890500504557.

Role of stress, corticotrophin releasing factor (CRF) and amygdala plasticity in chronic anxiety

Affiliations
Free article
Review

Role of stress, corticotrophin releasing factor (CRF) and amygdala plasticity in chronic anxiety

Anantha Shekhar et al. Stress. 2005 Dec.
Free article

Abstract

Stress initiates a series of neuronal responses that prepare an organism to adapt to new environmental challenges. However, chronic stress may lead to maladaptive responses that can result in psychiatric syndromes such as anxiety and depressive disorders. Corticotropin-releasing factor (CRF) has been identified as a key neuropeptide responsible for initiating many of the endocrine, autonomic and behavioral responses to stress. The amygdala expresses high concentrations of CRF receptors and is itself a major extrahypothalamic source of CRF containing neurons. Within the amygdala, the basolateral nucleus (BLA) has an important role in regulating anxiety and affective responses. During periods of stress, CRF is released into the amygdala and local CRF receptor activation has been postulated as a substrate for stress-induced alterations in affective behavior. Previous studies have suggested that synaptic plasticity in the BLA contributes to mechanisms underlying long-term changes in the regulation of affective behaviors. Several studies have shown that acute glutamate receptor-mediated activation, by either GABA-mediated disinhibition or CRF-mediated excitation, induces long-term synaptic plasticity and increases the excitability of BLA neurons. This review summarizes some of the data supporting the hypotheses that stress induced plasticity within the amygdala may be a critical step in the pathophysiology of the development of chronic anxiety states. It is further proposed that such a change in the limbic neural circuitry is involved in the transition from normal vigilance responses to pathological anxiety, leading to syndromes such as panic and post-traumatic stress disorders.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances