Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 Jan 15;66(2):632-7.
doi: 10.1158/0008-5472.CAN-05-3260.

Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma

Affiliations
Comparative Study

Comparison of metabolic pathways between cancer cells and stromal cells in colorectal carcinomas: a metabolic survival role for tumor-associated stroma

Michael I Koukourakis et al. Cancer Res. .

Abstract

Understanding tumor metabolism is important for the development of anticancer therapies. Immunohistochemical evaluation of colorectal adenocarcinomas showed that cancer cells share common enzyme/transporter activities suggestive of an anaerobic metabolism [high lactate dehydrogenase 5 (LDH5)/hypoxia-inducible factor alphas (HIFalphas)] with high ability for glucose absorption and lactate extrusion [high glucose transporter 1 (GLUT1)/monocarboxylate transporter (MCT1)]. The tumor-associated fibroblasts expressed proteins involved in lactate absorption (high MCT1/MCT2), lactate oxidation (high LDH1 and low HIFalphas/LDH5), and reduced glucose absorption (low GLUT1). The expression profile of the tumor-associated endothelium indicated aerobic metabolism (high LDH1 and low HIFalphas/LDH5), high glucose absorption (high GLUT1), and resistance to lactate intake (lack of MCT1). It is suggested that the newly formed stroma and vasculature express complementary metabolic pathways, buffering and recycling products of anaerobic metabolism to sustain cancer cell survival. Tumors survive and grow because they are capable of organizing the regional fibroblasts and endothelial cells into a harmoniously collaborating metabolic domain.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources