Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 May;50(6):705-13.
doi: 10.1016/j.neuropharm.2005.11.016. Epub 2006 Jan 19.

P2X(7) receptors exert a permissive role on the activation of release-enhancing presynaptic alpha7 nicotinic receptors co-existing on rat neocortex glutamatergic terminals

Affiliations
Comparative Study

P2X(7) receptors exert a permissive role on the activation of release-enhancing presynaptic alpha7 nicotinic receptors co-existing on rat neocortex glutamatergic terminals

Laura Patti et al. Neuropharmacology. 2006 May.

Abstract

Adenosine triphosphate (ATP) has been reported to enhance the release of glutamate by acting at P2X presynaptic receptors. Acetylcholine (ACh) can elicit glutamate release through presynaptic nicotinic cholinergic receptors (nAChRs) of the alpha7 subtype situated on glutamatergic axon terminals, provided that the terminal membrane is weakly depolarized. Considering that ATP and ACh are co-transmitters, we here investigate on the possibility that P2X and nAChRs co-exist and interact on the same glutamatergic nerve endings using purified rat neocortex synaptosomes in superfusion. ATP evoked Ca(2+)-dependent release of pre-accumulated D-[(3)H]aspartate ([(3)H]D-ASP) as well as of endogenous glutamate; (-)-nicotine, inactive on its own, potentiated the ATP-evoked release. The ATP analogue benzoylbenzoylATP (BzATP) behaved like ATP, but was approximately 30 times more potent; the potentiation of the BzATP-evoked release was blocked by methyllycaconitine or alpha-bungarotoxin. Adding inactive concentrations of (-)-nicotine, epibatidine or choline together with inactive concentrations of BzATP resulted in significant elevation of the [(3)H]D-ASP release mediated by alpha7 nAChRs. To conclude, P2X(7) receptors and alpha7 nAChRs seem to co-exist and interact on rat neocortex glutamatergic terminals; in particular, P2X(7) receptors exert a permissive role on the activation of alpha7 nAChRs, suggesting that ATP may not only evoke glutamate release on its own, but may also regulate the release of the amino acid elicited by ACh.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources