Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Apr 1;22(7):837-42.
doi: 10.1093/bioinformatics/btl008. Epub 2006 Jan 20.

Genetic test bed for feature selection

Affiliations

Genetic test bed for feature selection

Ashish Choudhary et al. Bioinformatics. .

Abstract

Motivation: Given a large set of potential features, such as the set of all gene-expression values from a microarray, it is necessary to find a small subset with which to classify. The task of finding an optimal feature set of a given size is inherently combinatoric because to assure optimality all feature sets of a given size must be checked. Thus, numerous suboptimal feature-selection algorithms have been proposed. There are strong impediments to evaluate feature-selection algorithms using real data when data are limited, a common situation in genetic classification. The difficulty is compound. First, there are no class-conditional distributions from which to draw data points, only a single small labeled sample. Second, there are no test data with which to estimate the feature-set errors, and one must depend on a training-data-based error estimator. Finally, there is no optimal feature set with which to compare the feature sets found by the algorithms.

Results: This paper describes a genetic test bed for the evaluation of feature-selection algorithms. It begins with a large biological feature-label dataset that is used as an empirical distribution and, using massively parallel computation, finds the top feature sets of various sizes based on a given sample size and classification rule. The user can draw random samples from the data, apply a proposed algorithm, and evaluate the proficiency of the proposed algorithm via three different measures (code provided). A key feature of the test bed is that, once a dataset is input, a single command creates the entire test bed relative to the dataset. The particular dataset used for the first version of the test bed comes from a microarray-based classification study that analyzes a large number of microarrays, prepared with RNA from breast tumor samples from each of 295 patients.

Availability: The software and supplementary material are available at http://public.tgen.org/tgen-cb/support/testbed/

Contact: edward@ece.tamu.edu.

PubMed Disclaimer

Publication types

LinkOut - more resources